From 684351b6b12fa8f2927d2d3695928ba5e0a40973 Mon Sep 17 00:00:00 2001
From: manonBlanco <blanco@teklia.com>
Date: Mon, 12 Jun 2023 15:26:51 +0200
Subject: [PATCH] Remove DPIAdjusting transform

---
 dan/transforms.py              | 49 +---------------------------------
 docs/usage/train/parameters.md |  8 ------
 2 files changed, 1 insertion(+), 56 deletions(-)

diff --git a/dan/transforms.py b/dan/transforms.py
index 2c596e3c..00bd6385 100644
--- a/dan/transforms.py
+++ b/dan/transforms.py
@@ -20,22 +20,6 @@ from torchvision.transforms import (
 from torchvision.transforms.functional import InterpolationMode
 
 
-class DPIAdjusting:
-    """
-    Resolution modification
-    """
-
-    def __init__(self, factor):
-        self.factor = factor
-
-    def __call__(self, x):
-        w, h = x.size
-        return x.resize(
-            (int(np.ceil(w * self.factor)), int(np.ceil(h * self.factor))),
-            Image.BILINEAR,
-        )
-
-
 class Dilation:
     """
     OCR: stroke width increasing
@@ -175,33 +159,8 @@ def get_list_augmenters(img, aug_configs, fill_value):
     for aug_config in aug_configs:
         if rand((1,)) > aug_config["proba"]:
             continue
-        if aug_config["type"] == "dpi":
-            valid_factor = False
-            while not valid_factor:
-                factor = Uniform(
-                    aug_config["min_factor"], aug_config["max_factor"]
-                ).sample()
-                valid_factor = not (
-                    (
-                        "max_width" in aug_config
-                        and factor * img.size[0] > aug_config["max_width"]
-                    )
-                    or (
-                        "max_height" in aug_config
-                        and factor * img.size[1] > aug_config["max_height"]
-                    )
-                    or (
-                        "min_width" in aug_config
-                        and factor * img.size[0] < aug_config["min_width"]
-                    )
-                    or (
-                        "min_height" in aug_config
-                        and factor * img.size[1] < aug_config["min_height"]
-                    )
-                )
-            augmenters.append(DPIAdjusting(factor))
 
-        elif aug_config["type"] == "zoom_ratio":
+        if aug_config["type"] == "zoom_ratio":
             ratio_h = Uniform(
                 aug_config["min_ratio_h"], aug_config["max_ratio_h"]
             ).sample()
@@ -340,12 +299,6 @@ def aug_config(proba_use_da, p):
         "order": "random",
         "proba": proba_use_da,
         "augmentations": [
-            {
-                "type": "dpi",
-                "proba": p,
-                "min_factor": 0.75,
-                "max_factor": 1,
-            },
             {
                 "type": "perspective",
                 "proba": p,
diff --git a/docs/usage/train/parameters.md b/docs/usage/train/parameters.md
index 9674f06c..e1dc0736 100644
--- a/docs/usage/train/parameters.md
+++ b/docs/usage/train/parameters.md
@@ -85,7 +85,6 @@ Augmentation transformations are applied on-the-fly during training to artificia
 
 The following transformations are implemented in `dan/transforms.py`:
 * Color inversion
-* DPI adjusting
 * Dilation and erosion
 * Elastic distortion
 * Reducing interline spacing
@@ -105,13 +104,6 @@ The following configuration is used by default when using the `teklia-dan train
         "order": "random",
         "proba": 0.9,
         "augmentations": [
-            {
-                "type": "dpi",
-                "proba": 0.1,
-                "min_factor": 0.75,
-                "max_factor": 1,
-                "preserve_ratio": True,
-            },
             {
                 "type": "perspective",
                 "proba": 0.1,
-- 
GitLab