diff --git a/dan/manager/training.py b/dan/manager/training.py index a3e1af660c58b43d2fa318862d9acbb49039bc8e..f316b510c409ec70b4c614f99e9edaa58b1692fb 100644 --- a/dan/manager/training.py +++ b/dan/manager/training.py @@ -548,11 +548,7 @@ class GenericTrainingManager: # perform epochs for num_epoch in range(self.latest_epoch + 1, nb_epochs): # Check maximum training time stop condition - if ( - self.params["training_params"]["max_training_time"] - and time() - self.begin_time - > self.params["training_params"]["max_training_time"] - ): + if time() - self.begin_time > 3600 * 24 * 1.9: break # set models trainable for model_name in self.models.keys(): diff --git a/dan/ocr/document/train.py b/dan/ocr/document/train.py index fb0ccf39aeb0d2e71394de56d22bc6b5e00a44f4..b6146a94c839fe1de5281aa0141d8a9d1be3513e 100644 --- a/dan/ocr/document/train.py +++ b/dan/ocr/document/train.py @@ -160,9 +160,6 @@ def get_config(): "training_params": { "output_folder": "outputs/dan_esposalles_record", # folder name for checkpoint and results "max_nb_epochs": 800, # maximum number of epochs before to stop - "max_training_time": 3600 - * 24 - * 1.9, # maximum time before to stop (in seconds) "load_epoch": "last", # ["best", "last"]: last to continue training, best to evaluate "batch_size": 2, # mini-batch size for training "use_ddp": False, # Use DistributedDataParallel diff --git a/docs/usage/train/parameters.md b/docs/usage/train/parameters.md index c61cf81d79d4a6a84d716096824385c85647fccd..69cc44c2536e8f23e33a3c13679819fc965c55d2 100644 --- a/docs/usage/train/parameters.md +++ b/docs/usage/train/parameters.md @@ -145,7 +145,6 @@ For a detailed description of all augmentation transforms, see the [dedicated pa | ------------------------------------------------------- | --------------------------------------------------------------------------- | ------------ | ------------------------------------------- | | `training_params.output_folder` | Directory for checkpoint and results. | `str` | | | `training_params.max_nb_epochs` | Maximum number of epochs before stopping training. | `int` | `800` | -| `training_params.max_training_time` | Maximum time (in seconds) before stopping training. | `int` | `164160` | | `training_params.load_epoch` | Model to load. Should be either `"best"` (evaluation) or `last` (training). | `str` | `"last"` | | `training_params.batch_size` | Mini-batch size for the training loop. | `int` | `2` | | `training_params.use_ddp` | Whether to use DistributedDataParallel. | `bool` | `False` | diff --git a/tests/conftest.py b/tests/conftest.py index ffc0dccb232a330f6f27e37d26683e91f051942f..f65fcb74dd61b3d8aa1e831f997fdaeec652409d 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -108,7 +108,6 @@ def training_config(): "training_params": { "output_folder": "dan_trained_model", # folder name for checkpoint and results "max_nb_epochs": 4, # maximum number of epochs before to stop - "max_training_time": 1200, # maximum time before to stop (in seconds) "load_epoch": "last", # ["best", "last"]: last to continue training, best to evaluate "batch_size": 2, # mini-batch size for training "use_ddp": False, # Use DistributedDataParallel