diff --git a/dan/utils.py b/dan/utils.py index f2f27dd298c1c876ebafb8968bc388fea16303d2..93243fcfd8f46876b74027e897c1faf31d5ff5b0 100644 --- a/dan/utils.py +++ b/dan/utils.py @@ -4,16 +4,6 @@ import numpy as np import torch from torch.distributions.uniform import Uniform -# Layout string to token -SEM_MATCHING_TOKENS_STR = { - "INTITULE": "ⓘ", - "DATE": "â““", - "COTE_SERIE": "â“¢", - "ANALYSE_COMPL": "â“’", - "PRECISIONS_SUR_COTE": "â“Ÿ", - "COTE_ARTICLE": "â“", -} - # Layout begin-token to end-token SEM_MATCHING_TOKENS = {"ⓘ": "â’¾", "â““": "â’¹", "â“¢": "Ⓢ", "â“’": "â’¸", "â“Ÿ": "â“…", "â“": "â’¶"} @@ -57,20 +47,6 @@ def pad_sequences_1D(data, padding_value): return padded_data -def resize_max(img, max_width=None, max_height=None): - if max_width is not None and img.shape[1] > max_width: - ratio = max_width / img.shape[1] - new_h = int(np.floor(ratio * img.shape[0])) - new_w = int(np.floor(ratio * img.shape[1])) - img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR) - if max_height is not None and img.shape[0] > max_height: - ratio = max_height / img.shape[0] - new_h = int(np.floor(ratio * img.shape[0])) - new_w = int(np.floor(ratio * img.shape[1])) - img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR) - return img - - def pad_images(data, padding_value, padding_mode="br"): """ data: list of numpy array @@ -157,36 +133,6 @@ def pad_image( return output -def pad_image_width_right(img, new_width, padding_value): - """ - Pad img to right side with padding value to reach new_width as width - """ - h, w, c = img.shape - pad_width = max((new_width - w), 0) - pad_right = np.ones((h, pad_width, c), dtype=img.dtype) * padding_value - img = np.concatenate([img, pad_right], axis=1) - return img - - -def pad_image_width_random(img, new_width, padding_value, max_pad_left_ratio=1): - """ - Randomly pad img to left and right sides with padding value to reach new_width as width - """ - h, w, c = img.shape - pad_width = max((new_width - w), 0) - max_pad_left = int(max_pad_left_ratio * pad_width) - pad_left = ( - randint(0, min(pad_width, max_pad_left)) - if pad_width != 0 and max_pad_left > 0 - else 0 - ) - pad_right = pad_width - pad_left - pad_left = np.ones((h, pad_left, c), dtype=img.dtype) * padding_value - pad_right = np.ones((h, pad_right, c), dtype=img.dtype) * padding_value - img = np.concatenate([pad_left, img, pad_right], axis=1) - return img - - def read_image(filename, scale=1.0): """ Read image and rescale it