diff --git a/dan/manager/ocr.py b/dan/manager/ocr.py
index b70b9364bad373acf6ceb09bd5d4e5f3b453a700..3d8ebdd489abdd26ea53cea5ddb05fc520eb4e40 100644
--- a/dan/manager/ocr.py
+++ b/dan/manager/ocr.py
@@ -9,8 +9,7 @@ import torch
 from torch import randint
 
 from dan.manager.dataset import DatasetManager, GenericDataset, apply_preprocessing
-from dan.ocr.utils import LM_str_to_ind
-from dan.utils import pad_image, pad_images, pad_sequences_1D
+from dan.utils import pad_image, pad_images, pad_sequences_1D, token_to_ind
 
 
 class OCRDatasetManager(DatasetManager):
@@ -174,7 +173,7 @@ class OCRDataset(GenericDataset):
             full_label = label
 
         sample["label"] = full_label
-        sample["token_label"] = LM_str_to_ind(self.charset, full_label)
+        sample["token_label"] = token_to_ind(self.charset, full_label)
         if "add_eot" in self.params["config"]["constraints"]:
             sample["token_label"].append(self.tokens["end"])
         sample["label_len"] = len(sample["token_label"])
diff --git a/dan/manager/training.py b/dan/manager/training.py
index fa3fbe12a562c7445dc8a281fb80909f4993e3f7..27bdf224b3095a14d4269ee27b8a41a670226ac5 100644
--- a/dan/manager/training.py
+++ b/dan/manager/training.py
@@ -20,8 +20,8 @@ from tqdm import tqdm
 from dan.manager.metrics import MetricManager
 from dan.manager.ocr import OCRDatasetManager
 from dan.mlflow import MLFLOW_AVAILABLE, logging_metrics, logging_tags_metrics
-from dan.ocr.utils import LM_ind_to_str
 from dan.schedulers import DropoutScheduler
+from dan.utils import ind_to_token
 
 if MLFLOW_AVAILABLE:
     import mlflow
@@ -1010,7 +1010,7 @@ class Manager(OCRManager):
             predicted_tokens = torch.argmax(pred, dim=1).detach().cpu().numpy()
             predicted_tokens = [predicted_tokens[i, : y_len[i]] for i in range(b)]
             str_x = [
-                LM_ind_to_str(self.dataset.charset, t, oov_symbol="")
+                ind_to_token(self.dataset.charset, t, oov_symbol="")
                 for t in predicted_tokens
             ]
 
@@ -1130,7 +1130,7 @@ class Manager(OCRManager):
                 confidence_scores[i, : prediction_len[i]].tolist() for i in range(b)
             ]
             str_x = [
-                LM_ind_to_str(self.dataset.charset, t, oov_symbol="")
+                ind_to_token(self.dataset.charset, t, oov_symbol="")
                 for t in predicted_tokens
             ]
 
diff --git a/dan/ocr/utils.py b/dan/ocr/utils.py
deleted file mode 100644
index 8038f6f9cab2bc21b80fda7b36b0fea66b445c96..0000000000000000000000000000000000000000
--- a/dan/ocr/utils.py
+++ /dev/null
@@ -1,17 +0,0 @@
-# -*- coding: utf-8 -*-
-# Charset / labels conversion
-def LM_str_to_ind(labels, str):
-    return [labels.index(c) for c in str]
-
-
-def LM_ind_to_str(labels, ind, oov_symbol=None):
-    if oov_symbol is not None:
-        res = []
-        for i in ind:
-            if i < len(labels):
-                res.append(labels[i])
-            else:
-                res.append(oov_symbol)
-    else:
-        res = [labels[i] for i in ind]
-    return "".join(res)
diff --git a/dan/predict/prediction.py b/dan/predict/prediction.py
index b1e8a356edecaf980aa687b4fad15115c87f7462..357bb4df1854a64af8b0e65794960c1fc628e2a8 100644
--- a/dan/predict/prediction.py
+++ b/dan/predict/prediction.py
@@ -14,14 +14,13 @@ from dan import logger
 from dan.datasets.extract.utils import save_json
 from dan.decoder import GlobalHTADecoder
 from dan.encoder import FCN_Encoder
-from dan.ocr.utils import LM_ind_to_str
 from dan.predict.attention import (
     get_predicted_polygons_with_confidence,
     parse_delimiters,
     plot_attention,
     split_text_and_confidences,
 )
-from dan.utils import read_image
+from dan.utils import ind_to_token, read_image
 
 
 class DAN:
@@ -221,7 +220,7 @@ class DAN:
 
             # Transform tokens to characters
             predicted_text = [
-                LM_ind_to_str(self.charset, t, oov_symbol="") for t in predicted_tokens
+                ind_to_token(self.charset, t, oov_symbol="") for t in predicted_tokens
             ]
 
             logger.info("Images processed")
diff --git a/dan/utils.py b/dan/utils.py
index e4f18b733b26d4d65c10ed7ac4ecc260c3fc7459..8bffd18a71b002651f5875dd5d37f2324d1ce015 100644
--- a/dan/utils.py
+++ b/dan/utils.py
@@ -123,3 +123,28 @@ def read_image(filename, scale=1.0):
         height = int(image.shape[0] * scale)
         image = cv2.resize(image, (width, height), interpolation=cv2.INTER_AREA)
     return image
+
+
+def round_floats(float_list, decimals=2):
+    """
+    Round list of floats with fixed decimals
+    """
+    return [np.around(num, decimals) for num in float_list]
+
+
+# Charset / labels conversion
+def token_to_ind(labels, str):
+    return [labels.index(c) for c in str]
+
+
+def ind_to_token(labels, ind, oov_symbol=None):
+    if oov_symbol is not None:
+        res = []
+        for i in ind:
+            if i < len(labels):
+                res.append(labels[i])
+            else:
+                res.append(oov_symbol)
+    else:
+        res = [labels[i] for i in ind]
+    return "".join(res)
diff --git a/docs/ref/ocr/utils.md b/docs/ref/ocr/utils.md
deleted file mode 100644
index adeec07327016e1240b904610c8b5aec282a720e..0000000000000000000000000000000000000000
--- a/docs/ref/ocr/utils.md
+++ /dev/null
@@ -1,3 +0,0 @@
-# Utils
-
-::: dan.ocr.utils
diff --git a/mkdocs.yml b/mkdocs.yml
index 2a5b6f42f6b39b719bb0115e69fc241003e6ca1f..8aa69a2efaf9e80ca4a4e470ccc4798a2b56dcf3 100644
--- a/mkdocs.yml
+++ b/mkdocs.yml
@@ -86,7 +86,6 @@ nav:
       - Training managers: ref/managers/training.md
     - OCR:
       - ref/ocr/index.md
-      - Utils: ref/ocr/utils.md
       - Document:
         - ref/ocr/document/index.md
         - Training: ref/ocr/document/train.md