Skip to content
Snippets Groups Projects

Bump Python requirement torchvision to 0.21.0

Open Teklia Bot requested to merge bump-torchvision into main
Compare and Show latest version
13 files
+ 287
8
Compare changes
  • Side-by-side
  • Inline
Files
13
+ 16
4
@@ -31,6 +31,8 @@ logger = logging.getLogger(__name__)
NERVAL_THRESHOLD = 0.30
NB_WORST_PREDICTIONS = 5
EMPTY_STRING = ""
def parse_threshold(value: str) -> float:
"""
@@ -87,14 +89,24 @@ def print_worst_predictions(all_inferences: Dict[str, List[Inference]]):
reverse=True,
)[:NB_WORST_PREDICTIONS]
for inference in worst_inferences:
if not inference.ground_truth:
logger.warning(
f"Ground truth is empty for {inference.image}. `{EMPTY_STRING}` will be displayed"
)
if not inference.prediction:
logger.warning(
f"Prediction is empty for {inference.image}. `{EMPTY_STRING}` will be displayed"
)
alignment = getNiceAlignment(
align(
inference.ground_truth,
inference.prediction,
inference.ground_truth or EMPTY_STRING,
inference.prediction or EMPTY_STRING,
task="path",
),
inference.ground_truth,
inference.prediction,
inference.ground_truth or EMPTY_STRING,
inference.prediction or EMPTY_STRING,
)
alignment_str = f'{alignment["query_aligned"]}\n{alignment["matched_aligned"]}\n{alignment["target_aligned"]}'
table.add_row([inference.image, round(inference.wer * 100, 2), alignment_str])
Loading