Skip to content
Snippets Groups Projects

Bump Python requirement torchvision to 0.21.0

Open Teklia Bot requested to merge bump-torchvision into main
Compare and Show latest version
6 files
+ 337
106
Compare changes
  • Side-by-side
  • Inline
Files
6
+ 55
101
@@ -2,7 +2,6 @@
import logging
import re
from enum import Enum
from itertools import pairwise
from typing import Dict, List, Tuple
import cv2
@@ -28,78 +27,30 @@ class Level(str, Enum):
def parse_delimiters(delimiters: List[str]) -> re.Pattern:
return re.compile(r"|".join(delimiters))
return re.compile(rf"[^{'|'.join(delimiters)}]+")
def build_ner_indices(
text: str, tokens: Dict[str, EntityType]
) -> List[Tuple[int, int]]:
"""
Compute the position of NER tokens in the text and return a list of indices.
:param text: list of characters.
:param tokens: NER tokens used.
Returns a list of indices where tokens are located.
"""
start_tokens, end_tokens = zip(*list(tokens.values()))
end_tokens = list(filter(bool, end_tokens))
if len(end_tokens):
assert len(start_tokens) == len(
end_tokens
), "You don't have the same number of starting tokens and ending tokens"
return [
[pos_start, pos_end] for pos_start, pos_end in zip(start_tokens, end_tokens)
]
return list(
pairwise(
[pos for pos, char in enumerate(text) if char in start_tokens] + [None]
)
)
def compute_offsets_by_level(
level: Level, text_list: List[str], indices: List[Tuple[int, int]]
):
def compute_offsets_by_level(full_text: str, level: Level, text_list: List[str]):
"""
Compute and return the list of offset between each text part.
:param full_text: predicted text.
:param level: Level to use from [char, word, line, ner].
:param text_list: list of text to use.
:param indices: list of indices where tokens are located for NER computation.
Returns a list of offsets.
"""
if level == Level.NER:
return (
[
current - next_token
for (_, next_token), (current, _) in pairwise(indices)
]
# Pad the list to match the length of the text list
+ [0]
)
return [int(level != Level.Char)] * len(text_list)
# offsets[idx] = number of characters between text_list[idx-1] and text_list[idx]
offsets = [int(level != Level.Char)] * (len(text_list) - 1)
if level == Level.NER:
# Start after the first entity
cursor = len(text_list[0])
for idx, split in enumerate(text_list[1:]):
# Number of characters between this entity and the previous one
offsets[idx] = full_text[cursor:].index(split)
cursor += offsets[idx] + len(split)
def compute_prob_by_ner(
characters: str, probabilities: List[float], indices: List[Tuple[int, int]]
) -> Tuple[List[str], List[np.float64]]:
"""
Split text and confidences using indices and return a list of average confidence scores.
:param characters: list of characters.
:param probabilities: list of character probabilities.
:param indices: list of indices where tokens are located.
Returns a list confidence scores.
"""
return zip(
*[
(
characters[current:next_token],
np.mean(probabilities[current:next_token]),
)
for current, next_token in indices
]
)
# Last offset is not used, padded with a 0 to match the length of text_list
return offsets + [0]
def compute_prob_by_separator(
@@ -113,78 +64,75 @@ def compute_prob_by_separator(
Returns a list confidence scores.
"""
# match anything except separators, get start and end index
pattern = re.compile(f"[^{separator.pattern}]+")
matches = [(m.start(), m.end()) for m in re.finditer(pattern, characters)]
matches = [(m.start(), m.end()) for m in separator.finditer(characters)]
# Iterate over text pieces and compute mean confidence
probs = [np.mean(probabilities[start:end]) for (start, end) in matches]
texts = [characters[start:end] for (start, end) in matches]
return texts, probs
return [characters[start:end] for (start, end) in matches], [
np.mean(probabilities[start:end]) for (start, end) in matches
]
def split_text(
text: str,
level: Level,
char_separators: re.Pattern,
word_separators: re.Pattern,
line_separators: re.Pattern,
tokens: Dict[str, EntityType],
tokens_separators: re.Pattern | None = None,
) -> Tuple[List[str], List[int]]:
"""
Split text into a list of characters, word, or lines.
:param text: Text prediction from DAN
:param level: Level to visualize from [char, word, line, ner]
:param word_separators: List of word separators
:param line_separators: List of line separators
:param tokens: NER tokens used
:param char_separators: Pattern used to find tokens in the charset
:param word_separators: Pattern used to find words
:param line_separators: Pattern used to find lines
:param tokens_separators: Pattern used to find NER entities
"""
indices = []
match level:
case Level.Char:
text_split = list(text)
text_split = char_separators.findall(text)
# split into words
case Level.Word:
text_split = re.split(word_separators, text)
text_split = word_separators.split(text)
# split into lines
case Level.Line:
text_split = re.split(line_separators, text)
text_split = line_separators.split(text)
# split into entities
case Level.NER:
if not tokens:
if not tokens_separators:
logger.error("Cannot compute NER level: tokens not found")
return [], []
indices = build_ner_indices(text, tokens)
text_split = [text[current:next_token] for current, next_token in indices]
text_split = tokens_separators.findall(text)
case _:
logger.error(f"Level should be either {list(map(str, Level))}")
return [], []
return text_split, compute_offsets_by_level(level, text_split, indices)
return text_split, compute_offsets_by_level(text, level, text_split)
def split_text_and_confidences(
text: str,
confidences: List[float],
level: Level,
char_separators: re.Pattern,
word_separators: re.Pattern,
line_separators: re.Pattern,
tokens: Dict[str, EntityType],
tokens_separators: re.Pattern | None = None,
) -> Tuple[List[str], List[np.float64], List[int]]:
"""
Split text into a list of characters, words or lines with corresponding confidences scores
:param text: Text prediction from DAN
:param confidences: Character confidences
:param level: Level to visualize from [char, word, line, ner]
:param word_separators: List of word separators
:param line_separators: List of line separators
:param tokens: NER tokens used
:param char_separators: Pattern used to find tokens of the charset
:param word_separators: Pattern used to find words
:param line_separators: Pattern used to find lines
:param tokens_separators: Pattern used to find NER entities
"""
indices = []
match level:
case Level.Char:
texts = list(text)
texts = char_separators.findall(text)
case Level.Word:
texts, confidences = compute_prob_by_separator(
text, confidences, word_separators
@@ -194,15 +142,13 @@ def split_text_and_confidences(
text, confidences, line_separators
)
case Level.NER:
if not tokens:
if not tokens_separators:
logger.error("Cannot compute NER level: tokens not found")
return [], [], []
indices = build_ner_indices(text, tokens)
if not indices:
return [], [], []
texts, confidences = compute_prob_by_ner(text, confidences, indices)
texts, confidences = compute_prob_by_separator(
text, confidences, tokens_separators
)
case _:
logger.error(f"Level should be either {list(map(str, Level))}")
return [], [], []
@@ -210,7 +156,7 @@ def split_text_and_confidences(
return (
texts,
[np.around(num, 2) for num in confidences],
compute_offsets_by_level(level, texts, indices),
compute_offsets_by_level(text, level, texts),
)
@@ -221,10 +167,11 @@ def get_predicted_polygons_with_confidence(
level: Level,
height: int,
width: int,
char_separators: re.Pattern,
max_object_height: int = 50,
word_separators: re.Pattern = parse_delimiters(["\n", " "]),
line_separators: re.Pattern = parse_delimiters(["\n"]),
tokens: Dict[str, EntityType] = {},
tokens_separators: re.Pattern | None = None,
) -> List[dict]:
"""
Returns the polygons of each object of the current prediction
@@ -234,14 +181,21 @@ def get_predicted_polygons_with_confidence(
:param level: Level to display (must be in [char, word, line, ner])
:param height: Original image height
:param width: Original image width
:param char_separators: Pattern used to find tokens of the charset
:param max_object_height: Maximum height of predicted objects.
:param word_separators: List of word separators
:param line_separators: List of line separators
:param tokens: NER tokens used
:param word_separators: Pattern used to find words
:param line_separators: Pattern used to find lines
:param tokens_separators: Pattern used to find NER entities
"""
# Split text into characters, words or lines
text_list, confidence_list, offsets = split_text_and_confidences(
text, confidences, level, word_separators, line_separators, tokens
text,
confidences,
level,
char_separators,
word_separators,
line_separators,
tokens_separators,
)
max_value = weights.sum(0).max()
Loading