Skip to content
Snippets Groups Projects

Fix version 0.2.0-dev3 and later

Merged Mélodie Boillet requested to merge fix-dev3 into main
All threads resolved!
1 file
+ 5
5
Compare changes
  • Side-by-side
  • Inline
+ 12
16
@@ -26,27 +26,23 @@ def pad_sequences_1D(data, padding_value):
return padded_data
def pad_images(data):
def pad_images(images):
"""
Pad the images so that they are in the middle of the large padded image (tb-lr mode).
:param data: List of numpy arrays.
:return padded_data: A tensor containing all the padded images.
Pad the images so that they are at the top left of the large padded image.
:param images: List of images as torch tensors.
:return padded_images: A tensor containing all the padded images.
"""
longest_x = max([x.shape[1] for x in data])
longest_y = max([x.shape[2] for x in data])
padded_data = torch.zeros((len(data), data[0].shape[0], longest_x, longest_y))
for index, image in enumerate(data):
delta_x = longest_x - image.shape[1]
delta_y = longest_y - image.shape[2]
top, bottom = delta_x // 2, delta_x - (delta_x // 2)
left, right = delta_y // 2, delta_y - (delta_y // 2)
padded_data[
longest_x = max([x.shape[1] for x in images])
longest_y = max([x.shape[2] for x in images])
padded_images = torch.zeros((len(images), images[0].shape[0], longest_x, longest_y))
for index, image in enumerate(images):
padded_images[
index,
:,
top : padded_data.shape[2] - bottom,
left : padded_data.shape[3] - right,
0 : image.shape[1],
0 : image.shape[2],
] = image
return padded_data
return padded_images
def read_image(path):
Loading