#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import random from io import BytesIO from pathlib import Path import cv2 import numpy as np import requests from PIL import Image from apistar.exceptions import ErrorResponse from arkindex import ArkindexClient, options_from_env api_client = ArkindexClient(**options_from_env()) def download_image(url): ''' Download an image and open it with Pillow ''' assert url.startswith('http'), 'Image URL must be HTTP(S)' # Download the image # Cannot use stream=True as urllib's responses do not support the seek(int) method, # which is explicitly required by Image.open on file-like objects resp = requests.get(url) resp.raise_for_status() # Preprocess the image and prepare it for classification image = Image.open(BytesIO(resp.content)) print('Downloaded image {} - size={}x{}'.format(url, image.size[0], image.size[1])) return image def write_file(file_name, content): with open(file_name, 'w') as f: f.write(content) TRAIN, TEST, VAL = 0, 1, 2 out_file_dict = {0: 'Train', 1: 'Test', 2: 'Validation'} class KaldiDataGenerator: def __init__(self, dataset_name='foo', out_dir_base='/tmp/kaldi_data', split_train_ratio=0.8, split_test_ratio=0.1, grayscale=True): self.out_dir_base = out_dir_base self.dataset_name = dataset_name self.split_train_ratio = split_train_ratio self.split_test_ratio = split_test_ratio self.split_val_ratio = 1 - self.split_train_ratio - self.split_test_ratio self.grayscale = grayscale def get_image(self, image_url, page_id): out_full_img_dir = os.path.join(self.out_dir_base, 'full', page_id) os.makedirs(out_full_img_dir, exist_ok=True) out_full_img_path = os.path.join(out_full_img_dir, 'full.jpg') if self.grayscale: download_image(image_url).convert('L').save( out_full_img_path, format='jpeg') img = cv2.imread(out_full_img_path, cv2.IMREAD_GRAYSCALE) else: download_image(image_url).save( out_full_img_path, format='jpeg') img = cv2.imread(out_full_img_path) return img def extract_lines(self, page_id): count = 0 line_bounding_rects = [] line_polygons = [] line_transcriptions = [] try: for res in api_client.paginate('ListTranscriptions', id=page_id, type='line'): text = res['text'] if not text or not text.strip(): continue line_transcriptions.append(text) polygon = res['zone']['polygon'] line_polygons.append(polygon) [x, y, w, h] = cv2.boundingRect(np.asarray(polygon)) line_bounding_rects.append([x, y, w, h]) count += 1 except ErrorResponse as e: print("ListTranscriptions failed", e.status_code, e.title, e.content, page_id) raise e print("C", count) full_image_url = res['zone']['image']['s3_url'] img = self.get_image(full_image_url, page_id=page_id) out_line_img_dir = os.path.join(self.out_dir_base, 'Lines', self.dataset_name, page_id) os.makedirs(out_line_img_dir, exist_ok=True) for i, [x, y, w, h] in enumerate(line_bounding_rects): cropped = img[y:y + h, x:x + w].copy() cv2.imwrite(f'{out_line_img_dir}_{i}.jpg', cropped) out_line_text_dir = os.path.join(self.out_dir_base, 'Transcriptions', self.dataset_name, page_id) os.makedirs(out_line_text_dir, exist_ok=True) for i, text in enumerate(line_transcriptions): write_file(f"{out_line_text_dir}_{i}.txt", text) def page_level_split(self, line_ids): page_ids = list({'_'.join(line_id.split('_')[:-1]) for line_id in line_ids}) # page_ids = list({line_id for line_id in line_ids}) random.shuffle(page_ids) page_count = len(page_ids) train_page_ids = page_ids[:round(page_count * self.split_train_ratio)] page_ids = page_ids[round(page_count * self.split_train_ratio):] test_page_ids = page_ids[:round(page_count * self.split_test_ratio)] page_ids = page_ids[round(page_count * self.split_test_ratio):] val_page_ids = page_ids page_dict = {page_id: TRAIN for page_id in train_page_ids} page_dict.update({page_id: TEST for page_id in test_page_ids}) page_dict.update({page_id: VAL for page_id in val_page_ids}) return page_dict def create_partitions(self): lines_path = Path(f'{self.out_dir_base}/Lines') line_ids = [str(file.relative_to(lines_path).with_suffix('')) for file in lines_path.glob('**/*.jpg')] page_dict = self.page_level_split(line_ids) datasets = [[] for _ in range(3)] for line_id in line_ids: page_id = '_'.join(line_id.split('_')[:-1]) split_id = page_dict[page_id] datasets[split_id].append(line_id) partitions_dir = os.path.join(self.out_dir_base, 'Partitions') os.makedirs(partitions_dir, exist_ok=True) for i, dataset in enumerate(datasets): file_name = f"{partitions_dir}/{out_file_dict[i]}Lines.lst" write_file(file_name, '\n'.join(dataset) + '\n') def run_pages(self, page_ids): for page_id in page_ids: print("P", page_id) self.extract_lines(page_id) def run_volumes(self, volume_ids): for volume_id in volume_ids: print("V", volume_id) page_ids = [page['id'] for page in api_client.paginate('ListElementChildren', id=volume_id)] self.run_pages(page_ids) example_page_ids = [ 'bf23cc96-f6b2-4182-923e-6c163db37eba', '7c51e648-370e-43b7-9340-3b1a17c13828', '56521074-59f4-4173-bfc1-4b1384ff8139', ] example_volume_ids = [ '8f4005e9-1921-47b0-be7b-e27c7fd29486', ] kaldi_data_generator = KaldiDataGenerator() # kaldi_data_generator.run_page(example_page_ids) kaldi_data_generator.run_volumes(example_volume_ids) kaldi_data_generator.create_partitions()