#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import os import random from enum import Enum from io import BytesIO from pathlib import Path import cv2 import numpy as np import requests from PIL import Image from apistar.exceptions import ErrorResponse from arkindex import ArkindexClient, options_from_env api_client = ArkindexClient(**options_from_env()) def download_image(url): ''' Download an image and open it with Pillow ''' assert url.startswith('http'), 'Image URL must be HTTP(S)' # Download the image # Cannot use stream=True as urllib's responses do not support the seek(int) method, # which is explicitly required by Image.open on file-like objects resp = requests.get(url) resp.raise_for_status() # Preprocess the image and prepare it for classification image = Image.open(BytesIO(resp.content)) print('Downloaded image {} - size={}x{}'.format(url, image.size[0], image.size[1])) return image def write_file(file_name, content): with open(file_name, 'w') as f: f.write(content) class Extraction(Enum): boundingRect: int = 0 polygon: int = 1 class KaldiDataGenerator: def __init__(self, dataset_name='foo', out_dir_base='/tmp/kaldi_data', grayscale=True, extraction=Extraction.boundingRect): self.out_dir_base = out_dir_base self.dataset_name = dataset_name self.grayscale = grayscale self.extraction_mode = extraction self.out_line_text_dir = os.path.join(self.out_dir_base, 'Transcriptions', self.dataset_name) os.makedirs(self.out_line_text_dir, exist_ok=True) self.out_line_img_dir = os.path.join(self.out_dir_base, 'Lines', self.dataset_name) os.makedirs(self.out_line_img_dir, exist_ok=True) def get_image(self, image_url, page_id): out_full_img_dir = os.path.join(self.out_dir_base, 'full', page_id) os.makedirs(out_full_img_dir, exist_ok=True) out_full_img_path = os.path.join(out_full_img_dir, 'full.jpg') if self.grayscale: download_image(image_url).convert('L').save( out_full_img_path, format='jpeg') img = cv2.imread(out_full_img_path, cv2.IMREAD_GRAYSCALE) else: download_image(image_url).save( out_full_img_path, format='jpeg') img = cv2.imread(out_full_img_path) return img def extract_lines(self, page_id): count = 0 line_bounding_rects = [] line_polygons = [] line_transcriptions = [] try: for res in api_client.paginate('ListTranscriptions', id=page_id, type='line'): text = res['text'] if not text or not text.strip(): continue line_transcriptions.append(text) polygon = np.asarray(res['zone']['polygon']).clip(0) line_polygons.append(polygon) [x, y, w, h] = cv2.boundingRect(polygon) line_bounding_rects.append([x, y, w, h]) count += 1 except ErrorResponse as e: print("ListTranscriptions failed", e.status_code, e.title, e.content, page_id) raise e print("Num of lines", count) full_image_url = res['zone']['image']['s3_url'] img = self.get_image(full_image_url, page_id=page_id) if self.extraction_mode == Extraction.boundingRect: for i, [x, y, w, h] in enumerate(line_bounding_rects): cropped = img[y:y + h, x:x + w].copy() cv2.imwrite(f'{self.out_line_img_dir}/{page_id}_{i}.jpg', cropped) elif self.extraction_mode == Extraction.polygon: for i, (polygon, rect) in enumerate(zip(line_polygons, line_bounding_rects)): polygon_img = self.extract_polygon_image(img, polygon=polygon, rect=rect) cv2.imwrite(f'{self.out_line_img_dir}/{page_id}_{i}.jpg', polygon_img) else: raise ValueError("Unsupported extraction mode") for i, text in enumerate(line_transcriptions): write_file(f"{self.out_line_text_dir}/{page_id}_{i}.txt", text) @staticmethod def extract_polygon_image(img, polygon, rect): pts = polygon.copy() [x, y, w, h] = rect cropped = img[y:y + h, x:x + w].copy() pts = pts - pts.min(axis=0) mask = np.zeros(cropped.shape[:2], np.uint8) cv2.drawContours(mask, [pts], -1, (255, 255, 255), -1, cv2.LINE_AA) dst = cv2.bitwise_and(cropped, cropped, mask=mask) bg = np.ones_like(cropped, np.uint8) * 255 cv2.bitwise_not(bg, bg, mask=mask) dst2 = bg + dst return dst2 def run_pages(self, page_ids): for page_id in page_ids: print("Page", page_id) self.extract_lines(page_id) def run_volumes(self, volume_ids): for volume_id in volume_ids: print("Vol", volume_id) page_ids = [page['id'] for page in api_client.paginate('ListElementChildren', id=volume_id)] self.run_pages(page_ids) class Split(Enum): Train: int = 0 Test: int = 1 Validation: int = 2 class KaldiPartitionSplitter: def __init__(self, out_dir_base='/tmp/kaldi_data', split_train_ratio=0.8, split_test_ratio=0.1): self.out_dir_base = out_dir_base self.split_train_ratio = split_train_ratio self.split_test_ratio = split_test_ratio self.split_val_ratio = 1 - self.split_train_ratio - self.split_test_ratio def page_level_split(self, line_ids): page_ids = list({'_'.join(line_id.split('_')[:-1]) for line_id in line_ids}) random.shuffle(page_ids) page_count = len(page_ids) train_page_ids = page_ids[:round(page_count * self.split_train_ratio)] page_ids = page_ids[round(page_count * self.split_train_ratio):] test_page_ids = page_ids[:round(page_count * self.split_test_ratio)] page_ids = page_ids[round(page_count * self.split_test_ratio):] val_page_ids = page_ids page_dict = {page_id: Split.Train.value for page_id in train_page_ids} page_dict.update({page_id: Split.Test.value for page_id in test_page_ids}) page_dict.update({page_id: Split.Validation.value for page_id in val_page_ids}) return page_dict def create_partitions(self): print("Creating partitions") lines_path = Path(f'{self.out_dir_base}/Lines') line_ids = [str(file.relative_to(lines_path).with_suffix('')) for file in lines_path.glob('**/*.jpg')] page_dict = self.page_level_split(line_ids) datasets = [[] for _ in range(3)] for line_id in line_ids: page_id = '_'.join(line_id.split('_')[:-1]) split_id = page_dict[page_id] datasets[split_id].append(line_id) partitions_dir = os.path.join(self.out_dir_base, 'Partitions') os.makedirs(partitions_dir, exist_ok=True) for i, dataset in enumerate(datasets): if not dataset: print(f"Partition {Split(i).name} is empty! Skipping..") continue file_name = f"{partitions_dir}/{Split(i).name}Lines.lst" write_file(file_name, '\n'.join(dataset) + '\n') def create_parser(): parser = argparse.ArgumentParser( description="Script to generate Kaldi training data from annotations from Arkindex", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-n', '--dataset_name', type=str, required=True, help='Name of the dataset being created for kaldi ' '(useful for distinguishing different datasets when in Lines or Transcriptions directory)') parser.add_argument('-o', '--out_dir', type=str, required=True, help='output directory') parser.add_argument('--train_ratio', type=float, default=0.8, help='Ratio of pages to be used in train (between 0 and 1)') parser.add_argument('--test_ratio', type=float, default=0.1, help='Ratio of pages to be used in train (between 0 and 1 - train_ratio)') parser.add_argument('-e', '--extraction_mode', type=lambda x: Extraction[x], default=Extraction.boundingRect, help=f'Mode for extracting the line images: {[e.name for e in Extraction]}') group = parser.add_mutually_exclusive_group(required=False) group.add_argument('--grayscale', action='store_true', help='Convert images to grayscale') group.add_argument('--color', action='store_false', help='Use color images') parser.set_defaults(grayscale=True) parser.add_argument('--volumes', nargs='*', help='List of volume ids to be used, separated by spaces') parser.add_argument('--pages', nargs='*', help='List of page ids to be used, separated by spaces') return parser def main(): args = create_parser().parse_args() print("ARGS", args, '\n') kaldi_data_generator = KaldiDataGenerator(dataset_name=args.dataset_name, out_dir_base=args.out_dir, grayscale=args.grayscale, extraction=args.extraction_mode) kaldi_partitioner = KaldiPartitionSplitter(out_dir_base=args.out_dir, split_train_ratio=args.train_ratio, split_test_ratio=args.test_ratio) # extract all the lines and transcriptions if args.pages: kaldi_data_generator.run_pages(args.pages) if args.volumes: kaldi_data_generator.run_volumes(args.volumes) print() # create partitions from all the extracted data kaldi_partitioner.create_partitions() print("DONE") if __name__ == '__main__': main()