diff --git a/tests/test_elements_worker/test_classifications.py b/tests/test_elements_worker/test_classifications.py
index 31ec96b63200a321a29c8628f200ef68e72ab98e..738de363046afc4582a2fd1cd448912fb306f387 100644
--- a/tests/test_elements_worker/test_classifications.py
+++ b/tests/test_elements_worker/test_classifications.py
@@ -10,6 +10,8 @@ from arkindex_worker.models import Element
 
 from . import BASE_API_CALLS
 
+DELETE_PARAMETER = "DELETE_PARAMETER"
+
 
 def test_get_ml_class_id_load_classes(responses, mock_elements_worker):
     corpus_id = "11111111-1111-1111-1111-111111111111"
@@ -191,108 +193,79 @@ def test_retrieve_ml_class_not_in_cache(responses, mock_elements_worker):
 
 
 @pytest.mark.parametrize(
-    ("data", "error_message"),
+    ("arg_name", "data", "error_message"),
     [
         # Wrong element
         (
-            {
-                "element": None,
-                "ml_class": "a_class",
-                "confidence": 0.42,
-                "high_confidence": True,
-            },
+            "element",
+            None,
             "element shouldn't be null and should be an Element or CachedElement",
         ),
         (
-            {
-                "element": "not element type",
-                "ml_class": "a_class",
-                "confidence": 0.42,
-                "high_confidence": True,
-            },
+            "element",
+            "not element type",
             "element shouldn't be null and should be an Element or CachedElement",
         ),
         # Wrong ml_class
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "ml_class": None,
-                "confidence": 0.42,
-                "high_confidence": True,
-            },
+            "ml_class",
+            None,
             "ml_class shouldn't be null and should be of type str",
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "ml_class": 1234,
-                "confidence": 0.42,
-                "high_confidence": True,
-            },
+            "ml_class",
+            1234,
             "ml_class shouldn't be null and should be of type str",
         ),
         # Wrong confidence
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "ml_class": "a_class",
-                "confidence": None,
-                "high_confidence": True,
-            },
+            "confidence",
+            None,
             "confidence shouldn't be null and should be a float in [0..1] range",
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "ml_class": "a_class",
-                "confidence": "wrong confidence",
-                "high_confidence": True,
-            },
+            "confidence",
+            "wrong confidence",
             "confidence shouldn't be null and should be a float in [0..1] range",
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "ml_class": "a_class",
-                "confidence": 0,
-                "high_confidence": True,
-            },
+            "confidence",
+            0,
             "confidence shouldn't be null and should be a float in [0..1] range",
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "ml_class": "a_class",
-                "confidence": 2.00,
-                "high_confidence": True,
-            },
+            "confidence",
+            2.00,
             "confidence shouldn't be null and should be a float in [0..1] range",
         ),
         # Wrong high_confidence
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "ml_class": "a_class",
-                "confidence": 0.42,
-                "high_confidence": None,
-            },
+            "high_confidence",
+            None,
             "high_confidence shouldn't be null and should be of type bool",
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "ml_class": "a_class",
-                "confidence": 0.42,
-                "high_confidence": "wrong high_confidence",
-            },
+            "high_confidence",
+            "wrong high_confidence",
             "high_confidence shouldn't be null and should be of type bool",
         ),
     ],
 )
-def test_create_classification_wrong_data(data, error_message, mock_elements_worker):
+def test_create_classification_wrong_data(
+    arg_name, data, error_message, mock_elements_worker
+):
     mock_elements_worker.classes = {"a_class": "0000"}
     with pytest.raises(AssertionError, match=re.escape(error_message)):
-        mock_elements_worker.create_classification(**data)
+        mock_elements_worker.create_classification(
+            **{
+                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
+                "ml_class": "a_class",
+                "confidence": 0.42,
+                "high_confidence": True,
+                # Overwrite with wrong data
+                arg_name: data,
+            }
+        )
 
 
 def test_create_classification_api_error(responses, mock_elements_worker):
@@ -498,262 +471,153 @@ def test_create_classification_duplicate_worker_run(responses, mock_elements_wor
 
 
 @pytest.mark.parametrize(
-    ("data", "error_message", "error_type"),
+    ("arg_name", "data", "error_message"),
     [
-        # Wrong element
         (
-            {
-                "element": None,
-                "classifications": [
-                    {
-                        "ml_class_id": "uuid1",
-                        "confidence": 0.75,
-                        "high_confidence": False,
-                    },
-                    {
-                        "ml_class_id": "uuid2",
-                        "confidence": 0.25,
-                        "high_confidence": False,
-                    },
-                ],
-            },
+            "element",
+            None,
             "element shouldn't be null and should be an Element or CachedElement",
-            AssertionError,
         ),
         (
-            {
-                "element": "not element type",
-                "classifications": [
-                    {
-                        "ml_class_id": "uuid1",
-                        "confidence": 0.75,
-                        "high_confidence": False,
-                    },
-                    {
-                        "ml_class_id": "uuid2",
-                        "confidence": 0.25,
-                        "high_confidence": False,
-                    },
-                ],
-            },
+            "element",
+            "not element type",
             "element shouldn't be null and should be an Element or CachedElement",
-            AssertionError,
         ),
-        # Wrong classifications
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "classifications": None,
-            },
+            "classifications",
+            None,
             "classifications shouldn't be null and should be of type list",
-            AssertionError,
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "classifications": 1234,
-            },
+            "classifications",
+            1234,
             "classifications shouldn't be null and should be of type list",
-            AssertionError,
         ),
-        # Wrong classifications > ml_class_id
-        (
-            {
+    ],
+)
+def test_create_classifications_wrong_data(
+    arg_name, data, error_message, mock_elements_worker
+):
+    with pytest.raises(AssertionError, match=error_message):
+        mock_elements_worker.create_classifications(
+            **{
                 "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
                 "classifications": [
                     {
-                        "ml_class_id": str(uuid4()),
+                        "ml_class_id": "uuid1",
                         "confidence": 0.75,
                         "high_confidence": False,
                     },
                     {
-                        "ml_class_id": 0.25,
+                        "ml_class_id": "uuid2",
+                        "confidence": 0.25,
                         "high_confidence": False,
                     },
                 ],
+                # Overwrite with wrong data
+                arg_name: data,
             },
-            "Classification at index 1 in classifications: ml_class_id shouldn't be null and should be of type str",
+        )
+
+
+@pytest.mark.parametrize(
+    ("arg_name", "data", "error_message", "error_type"),
+    [
+        # Wrong classifications > ml_class_id
+        (
+            "ml_class_id",
+            DELETE_PARAMETER,
+            "ml_class_id shouldn't be null and should be of type str",
             AssertionError,
-        ),
+        ),  # Updated
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "classifications": [
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 0.75,
-                        "high_confidence": False,
-                    },
-                    {
-                        "ml_class_id": None,
-                        "confidence": 0.25,
-                        "high_confidence": False,
-                    },
-                ],
-            },
-            "Classification at index 1 in classifications: ml_class_id shouldn't be null and should be of type str",
+            "ml_class_id",
+            None,
+            "ml_class_id shouldn't be null and should be of type str",
             AssertionError,
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "classifications": [
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 0.75,
-                        "high_confidence": False,
-                    },
-                    {
-                        "ml_class_id": 1234,
-                        "confidence": 0.25,
-                        "high_confidence": False,
-                    },
-                ],
-            },
-            "Classification at index 1 in classifications: ml_class_id shouldn't be null and should be of type str",
+            "ml_class_id",
+            1234,
+            "ml_class_id shouldn't be null and should be of type str",
             AssertionError,
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "classifications": [
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 0.75,
-                        "high_confidence": False,
-                    },
-                    {
-                        "ml_class_id": "not_an_uuid",
-                        "confidence": 0.25,
-                        "high_confidence": False,
-                    },
-                ],
-            },
-            "Classification at index 1 in classifications: ml_class_id is not a valid uuid.",
+            "ml_class_id",
+            "not_an_uuid",
+            "ml_class_id is not a valid uuid.",
             ValueError,
         ),
         # Wrong classifications > confidence
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "classifications": [
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 0.75,
-                        "high_confidence": False,
-                    },
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "high_confidence": False,
-                    },
-                ],
-            },
-            "Classification at index 1 in classifications: confidence shouldn't be null and should be a float in [0..1] range",
+            "confidence",
+            DELETE_PARAMETER,
+            "confidence shouldn't be null and should be a float in [0..1] range",
             AssertionError,
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "classifications": [
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 0.75,
-                        "high_confidence": False,
-                    },
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": None,
-                        "high_confidence": False,
-                    },
-                ],
-            },
-            "Classification at index 1 in classifications: confidence shouldn't be null and should be a float in [0..1] range",
+            "confidence",
+            None,
+            "confidence shouldn't be null and should be a float in [0..1] range",
             AssertionError,
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "classifications": [
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 0.75,
-                        "high_confidence": False,
-                    },
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": "wrong confidence",
-                        "high_confidence": False,
-                    },
-                ],
-            },
-            "Classification at index 1 in classifications: confidence shouldn't be null and should be a float in [0..1] range",
+            "confidence",
+            "wrong confidence",
+            "confidence shouldn't be null and should be a float in [0..1] range",
             AssertionError,
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "classifications": [
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 0.75,
-                        "high_confidence": False,
-                    },
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 0,
-                        "high_confidence": False,
-                    },
-                ],
-            },
-            "Classification at index 1 in classifications: confidence shouldn't be null and should be a float in [0..1] range",
+            "confidence",
+            0,
+            "confidence shouldn't be null and should be a float in [0..1] range",
             AssertionError,
         ),
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "classifications": [
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 0.75,
-                        "high_confidence": False,
-                    },
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 2.00,
-                        "high_confidence": False,
-                    },
-                ],
-            },
-            "Classification at index 1 in classifications: confidence shouldn't be null and should be a float in [0..1] range",
+            "confidence",
+            2.00,
+            "confidence shouldn't be null and should be a float in [0..1] range",
             AssertionError,
         ),
         # Wrong classifications > high_confidence
         (
-            {
-                "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
-                "classifications": [
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 0.75,
-                        "high_confidence": False,
-                    },
-                    {
-                        "ml_class_id": str(uuid4()),
-                        "confidence": 0.25,
-                        "high_confidence": "wrong high_confidence",
-                    },
-                ],
-            },
-            "Classification at index 1 in classifications: high_confidence should be of type bool",
+            "high_confidence",
+            "wrong high_confidence",
+            "high_confidence should be of type bool",
             AssertionError,
         ),
     ],
 )
-def test_create_classifications_wrong_data(
-    data, error_message, error_type, mock_elements_worker
+def test_create_classifications_wrong_classifications_data(
+    arg_name, data, error_message, error_type, mock_elements_worker
 ):
-    with pytest.raises(error_type, match=re.escape(error_message)):
-        mock_elements_worker.create_classifications(**data)
+    all_data = {
+        "element": Element({"id": "12341234-1234-1234-1234-123412341234"}),
+        "classifications": [
+            {
+                "ml_class_id": str(uuid4()),
+                "confidence": 0.75,
+                "high_confidence": False,
+            },
+            {
+                "ml_class_id": str(uuid4()),
+                "confidence": 0.25,
+                "high_confidence": False,
+                # Overwrite with wrong data
+                arg_name: data,
+            },
+        ],
+    }
+    if data == DELETE_PARAMETER:
+        del all_data["classifications"][1][arg_name]
+
+    with pytest.raises(
+        error_type,
+        match=re.escape(
+            f"Classification at index 1 in classifications: {error_message}"
+        ),
+    ):
+        mock_elements_worker.create_classifications(**all_data)
 
 
 def test_create_classifications_api_error(responses, mock_elements_worker):