Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
D
DAN
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Package registry
Container Registry
Operate
Terraform modules
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Automatic Text Recognition
DAN
Commits
26cb20bf
Commit
26cb20bf
authored
1 year ago
by
Solene Tarride
Browse files
Options
Downloads
Patches
Plain Diff
Prepare language files for word and subword LM
parent
21f27601
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
dan/datasets/extract/extract.py
+31
-26
31 additions, 26 deletions
dan/datasets/extract/extract.py
dan/datasets/extract/utils.py
+76
-1
76 additions, 1 deletion
dan/datasets/extract/utils.py
with
107 additions
and
27 deletions
dan/datasets/extract/extract.py
+
31
−
26
View file @
26cb20bf
...
...
@@ -14,6 +14,7 @@ import cv2
import
numpy
as
np
from
PIL
import
Image
from
tqdm
import
tqdm
from
nltk.tokenize
import
wordpunct_tokenize
from
arkindex_export
import
open_database
from
dan.datasets.extract.db
import
(
...
...
@@ -35,6 +36,7 @@ from dan.datasets.extract.utils import (
insert_token
,
normalize_linebreaks
,
normalize_spaces
,
Tokenizer
,
)
from
dan.utils
import
EntityType
,
LMTokenMapping
,
parse_tokens
from
line_image_extractor.extractor
import
extract
...
...
@@ -97,9 +99,9 @@ class ArkindexExtractor:
self
.
data
:
Dict
=
defaultdict
(
dict
)
self
.
charset
=
set
()
self
.
language_corpus
=
[]
self
.
language_corpus
=
defaultdict
(
list
)
self
.
language_tokens
=
[]
self
.
language_lexicon
=
[]
self
.
language_lexicon
=
defaultdict
(
list
)
# Image download tasks to process
self
.
tasks
:
List
[
Dict
[
str
,
str
]]
=
[]
...
...
@@ -275,12 +277,6 @@ class ArkindexExtractor:
)
return
text
.
strip
()
def
format_text_language_model
(
self
,
text
:
str
):
"""
Format text for the language model. Return the text tokenized at character-level.
"""
return
"
"
.
join
(
map
(
self
.
mapping
.
encode_token
,
list
(
text
.
strip
())))
def
process_element
(
self
,
element
:
Element
,
...
...
@@ -319,14 +315,6 @@ class ArkindexExtractor:
self
.
data
[
split
][
str
(
image_path
)]
=
text
self
.
charset
=
self
.
charset
.
union
(
set
(
text
))
# Language model should be built using only text from the training set
if
split
==
"
train
"
:
self
.
language_corpus
.
append
(
self
.
format_text_language_model
(
text
))
# Language model should be built using only text from the training set
if
split
==
"
train
"
:
self
.
language_corpus
.
append
(
self
.
format_text_language_model
(
text
))
def
process_parent
(
self
,
pbar
,
...
...
@@ -365,6 +353,9 @@ class ArkindexExtractor:
"""
Convert charset to a LM-compatible charset. Ensure that special LM tokens do not appear in the charset.
"""
logger
.
info
(
"
Preparing language resources
"
)
# Build LM tokens
for
token
in
sorted
(
list
(
self
.
charset
)):
assert
(
token
not
in
self
.
mapping
.
encode
.
values
()
...
...
@@ -373,14 +364,27 @@ class ArkindexExtractor:
self
.
mapping
.
encode
[
token
]
)
if
token
in
self
.
mapping
.
encode
else
self
.
language_tokens
.
append
(
token
)
# Add the special blank token
self
.
language_tokens
.
append
(
self
.
mapping
.
ctc
.
encoded
)
# Build lexicon
assert
all
(
[
len
(
token
)
==
1
for
token
in
self
.
language_lexicon
]
),
"
Tokens should be single characters.
"
self
.
language_lexicon
=
[
f
"
{
token
}
{
token
}
"
for
token
in
self
.
language_tokens
]
# Build LM corpus
train_corpus
=
[
text
for
text
in
self
.
data
[
"
train
"
].
values
()]
tokenizer
=
Tokenizer
(
train_corpus
,
outdir
=
self
.
output
/
"
language_model
"
,
mapping
=
self
.
mapping
,
tokens
=
self
.
tokens
)
tokenizer
.
train_subword_tokenizer
()
self
.
language_corpus
[
"
characters
"
]
=
[
tokenizer
.
char_tokenize
(
doc
)
for
doc
in
train_corpus
]
self
.
language_corpus
[
"
words
"
]
=
[
tokenizer
.
word_tokenize
(
doc
)
for
doc
in
train_corpus
]
self
.
language_corpus
[
"
subwords
"
]
=
[
tokenizer
.
subword_tokenize
(
doc
)
for
doc
in
train_corpus
]
# Build vocabulary
word_vocabulary
=
set
([
word
for
doc
in
self
.
language_corpus
[
"
words
"
]
for
word
in
doc
.
split
(
"
"
)])
subword_vocabulary
=
set
([
subword
for
doc
in
self
.
language_corpus
[
"
subwords
"
]
for
subword
in
doc
.
split
(
"
"
)])
# Build LM lexicon
self
.
language_lexicon
[
"
chars
"
]
=
[
f
"
{
token
}
{
tokenizer
.
char_tokenize
(
token
)
}
"
for
token
in
self
.
language_tokens
]
self
.
language_lexicon
[
"
words
"
]
=
[
f
"
{
word
}
{
tokenizer
.
char_tokenize
(
word
)
}
"
for
word
in
word_vocabulary
]
self
.
language_lexicon
[
"
subwords
"
]
=
[
f
"
{
subword
}
{
tokenizer
.
char_tokenize
(
subword
)
}
"
for
subword
in
subword_vocabulary
]
def
export
(
self
):
(
self
.
output
/
"
labels.json
"
).
write_text
(
...
...
@@ -390,15 +394,16 @@ class ArkindexExtractor:
indent
=
4
,
)
)
(
self
.
output
/
"
language_model
"
/
"
corpus.txt
"
).
write_text
(
"
\n
"
.
join
(
self
.
language_corpus
)
)
for
level
in
[
"
characters
"
,
"
words
"
,
"
subwords
"
]:
(
self
.
output
/
"
language_model
"
/
f
"
corpus_
{
level
}
.txt
"
).
write_text
(
"
\n
"
.
join
(
self
.
language_corpus
[
level
])
)
(
self
.
output
/
"
language_model
"
/
f
"
lexicon_
{
level
}
.txt
"
).
write_text
(
"
\n
"
.
join
(
self
.
language_lexicon
[
level
])
)
(
self
.
output
/
"
language_model
"
/
"
tokens.txt
"
).
write_text
(
"
\n
"
.
join
(
self
.
language_tokens
)
)
(
self
.
output
/
"
language_model
"
/
"
lexicon.txt
"
).
write_text
(
"
\n
"
.
join
(
self
.
language_lexicon
)
)
(
self
.
output
/
"
charset.pkl
"
).
write_bytes
(
pickle
.
dumps
(
sorted
(
list
(
self
.
charset
)))
)
...
...
This diff is collapsed.
Click to expand it.
dan/datasets/extract/utils.py
+
76
−
1
View file @
26cb20bf
...
...
@@ -12,8 +12,10 @@ from tenacity import (
stop_after_attempt
,
wait_exponential
,
)
from
pathlib
import
Path
from
dan.utils
import
EntityType
import
sentencepiece
as
spm
from
nltk
import
wordpunct_tokenize
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -107,3 +109,76 @@ def get_bbox(polygon: List[List[int]]) -> str:
x
,
y
=
min
(
all_x
),
min
(
all_y
)
width
,
height
=
max
(
all_x
)
-
x
,
max
(
all_y
)
-
y
return
"
,
"
.
join
(
list
(
map
(
str
,
[
int
(
x
),
int
(
y
),
int
(
width
),
int
(
height
)])))
class
Tokenizer
():
"""
A multi-level tokenizer (char, subword, word)
Subword tokenizer is trained using sentencepiece.
"""
def
__init__
(
self
,
training_corpus
,
outdir
,
mapping
,
tokens
=
[])
->
None
:
self
.
corpus
=
training_corpus
self
.
outdir
=
outdir
self
.
prefix
=
f
"
{
self
.
outdir
}
/subword_tokenizer
"
self
.
sentencepiece_model
=
None
self
.
mapping
=
mapping
self
.
tokens
=
tokens
@property
def
ner_tokens
(
self
):
return
[
entity
.
start
for
entity
in
self
.
tokens
.
values
()]
+
[
entity
.
end
for
entity
in
self
.
tokens
.
values
()
if
entity
.
end
!=
""
]
@property
def
mapping_tokens
(
self
):
return
[
token
.
encoded
for
token
in
self
.
mapping
]
@property
def
special_tokens
(
self
):
return
list
(
set
(
self
.
ner_tokens
+
self
.
mapping_tokens
))
def
train_subword_tokenizer
(
self
):
"""
Train a sentencepiece model on the training corpus.
"""
# Write the corpus in a text file
corpus_file
=
Path
(
self
.
outdir
/
f
"
tmp_training_corpus.txt
"
)
corpus_file
.
write_text
(
"
\n
"
.
join
(
self
.
corpus
))
# Train the tokenizer and load it
logger
.
info
(
"
Training sentencepiece model for subword tokenization
"
)
spm
.
SentencePieceTrainer
.
train
(
input
=
str
(
corpus_file
),
vocab_size
=
1000
,
model_prefix
=
self
.
prefix
,
user_defined_symbols
=
self
.
special_tokens
)
# Delete the corpus file
corpus_file
.
unlink
()
# Load the corpus
self
.
sentencepiece_model
=
spm
.
SentencePieceProcessor
(
model_file
=
f
"
{
self
.
prefix
}
.model
"
)
def
subword_tokenize
(
self
,
text
:
str
,
enable_sampling
=
True
,
alpha
=
0.1
,
nbest_size
=-
1
)
->
List
[
str
]:
"""
Tokenize into subwords. As sampling is enabled, a text can be tokenized in different ways.
"""
tokens
=
self
.
sentencepiece_model
.
encode
(
text
,
out_type
=
str
,
enable_sampling
=
enable_sampling
,
alpha
=
alpha
,
nbest_size
=
nbest_size
)
# Replace special sentencepiece space token
tokens
=
[
t
.
replace
(
"
▁
"
,
"
⎵
"
)
for
t
in
tokens
]
# Return encoded tokenized text
return
"
"
.
join
([
""
.
join
(
self
.
encode
(
subword
))
for
subword
in
tokens
])
def
word_tokenize
(
self
,
text
:
str
)
->
List
[
str
]:
"""
Tokenize text into words
Spaces (⎵) and NER tokens are considered as distinct words.
"""
words
=
[
""
.
join
(
self
.
encode
(
word
))
for
word
in
wordpunct_tokenize
(
text
)]
words
=
"
"
.
join
([
word
+
"
⎵
"
if
(
i
!=
len
(
words
)
-
1
and
word
not
in
self
.
ner_tokens
)
else
word
for
i
,
word
in
enumerate
(
words
)])
return
words
def
char_tokenize
(
self
,
text
:
str
)
->
List
[
str
]:
"""
Tokenize text into characters
"""
return
"
"
.
join
(
self
.
encode
(
list
(
text
)))
def
encode
(
self
,
text
:
List
[
str
])
->
List
[
str
]:
return
map
(
self
.
mapping
.
encode_token
,
text
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment