Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
D
DAN
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Package registry
Container Registry
Operate
Terraform modules
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Automatic Text Recognition
DAN
Commits
33958fdb
Commit
33958fdb
authored
3 years ago
by
Denis Coquenet
Browse files
Options
Downloads
Patches
Plain Diff
add lstm option
parent
09f1d041
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
OCR/document_OCR/dan/main_dan.py
+1
-0
1 addition, 0 deletions
OCR/document_OCR/dan/main_dan.py
OCR/document_OCR/dan/models_dan.py
+11
-6
11 additions, 6 deletions
OCR/document_OCR/dan/models_dan.py
OCR/document_OCR/dan/trainer_dan.py
+3
-5
3 additions, 5 deletions
OCR/document_OCR/dan/trainer_dan.py
with
15 additions
and
11 deletions
OCR/document_OCR/dan/main_dan.py
+
1
−
0
View file @
33958fdb
...
...
@@ -151,6 +151,7 @@ if __name__ == "__main__":
"
dec_dim_feedforward
"
:
256
,
# number of dimension for feedforward layer in transformer decoder layers
"
use_2d_pe
"
:
True
,
# use 2D positional embedding
"
use_1d_pe
"
:
True
,
# use 1D positional embedding
"
use_lstm
"
:
False
,
"
attention_win
"
:
100
,
# length of attention window
# Curriculum dropout
"
dropout_scheduler
"
:
{
...
...
This diff is collapsed.
Click to expand it.
OCR/document_OCR/dan/models_dan.py
+
11
−
6
View file @
33958fdb
...
...
@@ -262,22 +262,24 @@ class GlobalHTADecoder(Module):
self
.
enc_dim
=
params
[
"
enc_dim
"
]
self
.
dec_l_max
=
params
[
"
l_max
"
]
self
.
features_updater
=
FeaturesUpdater
(
params
)
self
.
dropout
=
Dropout
(
params
[
"
dec_pred_dropout
"
])
self
.
dec_att_win
=
params
[
"
attention_win
"
]
if
params
[
"
attention_win
"
]
is
not
None
else
1
self
.
use_1d_pe
=
"
use_1d_pe
"
not
in
params
or
params
[
"
use_1d_pe
"
]
self
.
use_lstm
=
params
[
"
use_lstm
"
]
self
.
features_updater
=
FeaturesUpdater
(
params
)
self
.
att_decoder
=
GlobalAttDecoder
(
params
)
self
.
emb
=
Embedding
(
num_embeddings
=
params
[
"
vocab_size
"
]
+
3
,
embedding_dim
=
self
.
enc_dim
)
self
.
pe_1d
=
PositionalEncoding1D
(
self
.
enc_dim
,
self
.
dec_l_max
,
params
[
"
device
"
])
self
.
use_1d_pe
=
"
use_1d_pe
"
not
in
params
or
params
[
"
use_1d_pe
"
]
vocab_size
=
params
[
"
vocab_size
"
]
+
1
if
self
.
use_lstm
:
self
.
lstm_predict
=
LSTM
(
self
.
enc_dim
,
self
.
enc_dim
)
vocab_size
=
params
[
"
vocab_size
"
]
+
1
self
.
end_conv
=
Conv1d
(
self
.
enc_dim
,
vocab_size
,
kernel_size
=
1
)
def
forward
(
self
,
raw_features_1d
,
enhanced_features_1d
,
tokens
,
reduced_size
,
token_len
,
features_size
,
start
=
0
,
hidden_emb
=
None
,
hidden_predict
=
None
,
cache
=
None
,
num_pred
=
None
,
keep_all_weights
=
False
,
token_line
=
None
,
token_pg
=
None
):
def
forward
(
self
,
raw_features_1d
,
enhanced_features_1d
,
tokens
,
reduced_size
,
token_len
,
features_size
,
start
=
0
,
hidden_predict
=
None
,
cache
=
None
,
num_pred
=
None
,
keep_all_weights
=
False
,
token_line
=
None
,
token_pg
=
None
):
device
=
raw_features_1d
.
device
# Token to Embedding
...
...
@@ -321,12 +323,15 @@ class GlobalHTADecoder(Module):
predict_last_n_only
=
num_pred
,
keep_all_weights
=
keep_all_weights
)
if
self
.
use_lstm
:
output
,
hidden_predict
=
self
.
lstm_predict
(
output
,
hidden_predict
)
dp_output
=
self
.
dropout
(
relu
(
output
))
preds
=
self
.
end_conv
(
dp_output
.
permute
(
1
,
2
,
0
))
if
not
keep_all_weights
:
weights
=
torch
.
sum
(
weights
,
dim
=
1
,
keepdim
=
True
).
reshape
(
-
1
,
1
,
features_size
[
2
],
features_size
[
3
])
return
output
,
preds
,
hidden_emb
,
hidden_predict
,
cache
,
weights
return
output
,
preds
,
hidden_predict
,
cache
,
weights
def
generate_enc_mask
(
self
,
batch_reduced_size
,
total_size
,
device
):
"""
...
...
This diff is collapsed.
Click to expand it.
OCR/document_OCR/dan/trainer_dan.py
+
3
−
5
View file @
33958fdb
...
...
@@ -54,7 +54,6 @@ class Manager(OCRManager):
simulated_y_pred
=
y
with
autocast
(
enabled
=
self
.
params
[
"
training_params
"
][
"
use_amp
"
]):
hidden_emb
=
None
hidden_predict
=
None
cache
=
None
...
...
@@ -66,12 +65,12 @@ class Manager(OCRManager):
features
=
torch
.
flatten
(
pos_features
,
start_dim
=
2
,
end_dim
=
3
).
permute
(
2
,
0
,
1
)
enhanced_features
=
pos_features
enhanced_features
=
torch
.
flatten
(
enhanced_features
,
start_dim
=
2
,
end_dim
=
3
).
permute
(
2
,
0
,
1
)
output
,
pred
,
hidden_emb
,
hidden_predict
,
cache
,
weights
=
self
.
models
[
"
decoder
"
](
features
,
enhanced_features
,
output
,
pred
,
hidden_predict
,
cache
,
weights
=
self
.
models
[
"
decoder
"
](
features
,
enhanced_features
,
simulated_y_pred
[:,
:
-
1
],
reduced_size
,
[
max
(
y_len
)
for
_
in
range
(
b
)],
features_size
,
start
=
0
,
hidden_emb
=
hidden_emb
,
start
=
0
,
hidden_predict
=
hidden_predict
,
cache
=
cache
,
keep_all_weights
=
True
)
...
...
@@ -115,7 +114,6 @@ class Manager(OCRManager):
confidence_scores
=
list
()
cache
=
None
hidden_predict
=
None
hidden_emb
=
None
if
b
>
1
:
features_list
=
list
()
for
i
in
range
(
b
):
...
...
@@ -136,7 +134,7 @@ class Manager(OCRManager):
enhanced_features
=
torch
.
flatten
(
enhanced_features
,
start_dim
=
2
,
end_dim
=
3
).
permute
(
2
,
0
,
1
)
for
i
in
range
(
0
,
max_chars
):
output
,
pred
,
hidden_emb
,
hidden_predict
,
cache
,
weights
=
self
.
models
[
"
decoder
"
](
features
,
enhanced_features
,
predicted_tokens
,
reduced_size
,
predicted_tokens_len
,
features_size
,
start
=
0
,
hidden_emb
=
hidden_emb
,
hidden_predict
=
hidden_predict
,
cache
=
cache
,
num_pred
=
1
)
output
,
pred
,
hidden_predict
,
cache
,
weights
=
self
.
models
[
"
decoder
"
](
features
,
enhanced_features
,
predicted_tokens
,
reduced_size
,
predicted_tokens_len
,
features_size
,
start
=
0
,
hidden_predict
=
hidden_predict
,
cache
=
cache
,
num_pred
=
1
)
whole_output
.
append
(
output
)
confidence_scores
.
append
(
torch
.
max
(
torch
.
softmax
(
pred
[:,
:],
dim
=
1
),
dim
=
1
).
values
)
coverage_vector
=
torch
.
clamp
(
coverage_vector
+
weights
,
0
,
1
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment