Skip to content
Snippets Groups Projects
Commit 65177a4b authored by Manon Blanco's avatar Manon Blanco Committed by Manon Blanco
Browse files

Always convert to RGB

parent f0a6e38c
No related branches found
No related tags found
1 merge request!207Always convert to RGB
...@@ -92,9 +92,7 @@ class FCN_Encoder(Module): ...@@ -92,9 +92,7 @@ class FCN_Encoder(Module):
self.init_blocks = ModuleList( self.init_blocks = ModuleList(
[ [
ConvBlock( ConvBlock(3, 16, stride=(1, 1), dropout=self.dropout),
params["input_channels"], 16, stride=(1, 1), dropout=self.dropout
),
ConvBlock(16, 32, stride=(2, 2), dropout=self.dropout), ConvBlock(16, 32, stride=(2, 2), dropout=self.dropout),
ConvBlock(32, 64, stride=(2, 2), dropout=self.dropout), ConvBlock(32, 64, stride=(2, 2), dropout=self.dropout),
ConvBlock(64, 128, stride=(2, 2), dropout=self.dropout), ConvBlock(64, 128, stride=(2, 2), dropout=self.dropout),
......
...@@ -138,7 +138,6 @@ def get_config(): ...@@ -138,7 +138,6 @@ def get_config():
}, },
"transfered_charset": True, # Transfer learning of the decision layer based on charset of the line HTR model "transfered_charset": True, # Transfer learning of the decision layer based on charset of the line HTR model
"additional_tokens": 1, # for decision layer = [<eot>, ], only for transferred charset "additional_tokens": 1, # for decision layer = [<eot>, ], only for transferred charset
"input_channels": 3, # number of channels of input image
"dropout": 0.5, # dropout rate for encoder "dropout": 0.5, # dropout rate for encoder
"enc_dim": 256, # dimension of extracted features "enc_dim": 256, # dimension of extracted features
"nb_layers": 5, # encoder "nb_layers": 5, # encoder
......
...@@ -51,7 +51,6 @@ version: 0.0.1 ...@@ -51,7 +51,6 @@ version: 0.0.1
parameters: parameters:
max_char_prediction: int max_char_prediction: int
encoder: encoder:
input_channels: int
dropout: float dropout: float
decoder: decoder:
enc_dim: int enc_dim: int
......
...@@ -123,7 +123,6 @@ For a detailed description of all augmentation transforms, see the [dedicated pa ...@@ -123,7 +123,6 @@ For a detailed description of all augmentation transforms, see the [dedicated pa
| `model_params.transfer_learning.decoder` | Model to load for the decoder [state_dict_name, checkpoint_path, learnable, strict]. | `list` | `["encoder", "pretrained_models/dan_rimes_page.pt", True, False]` | | `model_params.transfer_learning.decoder` | Model to load for the decoder [state_dict_name, checkpoint_path, learnable, strict]. | `list` | `["encoder", "pretrained_models/dan_rimes_page.pt", True, False]` |
| `model_params.transfered_charset` | Transfer learning of the decision layer based on charset of the model to transfer. | `bool` | `True` | | `model_params.transfered_charset` | Transfer learning of the decision layer based on charset of the model to transfer. | `bool` | `True` |
| `model_params.additional_tokens` | For decision layer = [<eot>, ], only for transferred charset. | `int` | `1` | | `model_params.additional_tokens` | For decision layer = [<eot>, ], only for transferred charset. | `int` | `1` |
| `model_params.input_channels` | Number of channels of input image. | `int` | `3` |
| `model_params.dropout` | Dropout probability in the encoder. | `float` | `0.5` | | `model_params.dropout` | Dropout probability in the encoder. | `float` | `0.5` |
| `model_params.enc_dim` | Dimension of features extracted by the encoder. | `int` | `256` | | `model_params.enc_dim` | Dimension of features extracted by the encoder. | `int` | `256` |
| `model_params.nb_layers` | Number of layers in the encoder. | `int` | `5` | | `model_params.nb_layers` | Number of layers in the encoder. | `int` | `5` |
......
...@@ -86,7 +86,6 @@ def training_config(): ...@@ -86,7 +86,6 @@ def training_config():
"transfer_learning": None, "transfer_learning": None,
"transfered_charset": True, # Transfer learning of the decision layer based on charset of the line HTR model "transfered_charset": True, # Transfer learning of the decision layer based on charset of the line HTR model
"additional_tokens": 1, # for decision layer = [<eot>, ], only for transferred charset "additional_tokens": 1, # for decision layer = [<eot>, ], only for transferred charset
"input_channels": 3, # number of channels of input image
"dropout": 0.5, # dropout rate for encoder "dropout": 0.5, # dropout rate for encoder
"enc_dim": 256, # dimension of extracted features "enc_dim": 256, # dimension of extracted features
"nb_layers": 5, # encoder "nb_layers": 5, # encoder
......
...@@ -3,7 +3,6 @@ version: 0.0.1 ...@@ -3,7 +3,6 @@ version: 0.0.1
parameters: parameters:
max_char_prediction: 200 max_char_prediction: 200
encoder: encoder:
input_channels: 3
dropout: 0.5 dropout: 0.5
decoder: decoder:
enc_dim: 256 enc_dim: 256
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment