| `--word-separators` | List of word separators. | `list` | `[" ", "\n"]` |
| `--line-separators` | List of line separators. | `list` | `["\n"]` |
| `--threshold-method` | Method to use for attention mask thresholding. Should be in `["otsu", "simple"]`. | `str` | `"otsu"` |
| `--threshold-value ` | Threshold to use for the "simple" thresholding method. | `int` | `0` |
| `--batch-size ` | Size of the batches for prediction. | `int` | `1` |
| `--start-token ` | Use a specific starting token at the beginning of the prediction. Useful when making predictions on different single pages. | `str` | `None` |
| `--use-language-model` | Whether to use an external n-gram language model to rescore hypotheses. See [the dedicated example](#predict-with-an-external-n-gram-language-model) for details. | `bool` | `False` |
## Examples
### Predict with confidence scores
To run a prediction with confidence scores, run this command:
```shell
teklia-dan predict \
--image dan_humu_page/example.jpg \
--model dan_humu_page/model.pt \
--parameters dan_humu_page/parameters.yml \
--charset dan_humu_page/charset.pkl \
--output dan_humu_page/predict/ \
--confidence-score
```
It will create the following JSON file named `dan_humu_page/predict/example.json`
```json
{
"text":"Hansteensgt. 2 IV 28/4 - 19\nKj\u00e6re Gerhard.\nTak for Brevet om Boken og Haven\nog Crokus og Blaaveis og tak fordi\nDu vilde be mig derut sammen\nmed Kris og Ragna. Men vet Du\nda ikke, at Kris reiste med sin S\u00f8-\nster Fru Cr\u00f8ger til Lillehammer\nnogle Dage efter Begravelsen? Hen\ndes Address er Amtsingeni\u00f8r\nCr\u00f8ger. Hun skriver at de blir\nder til lidt ut i Mai. Nu er hun\nnoksaa medtat skj\u00f8nner jeg af Sorg\nog af L\u00e6ngsel, skriver saameget r\u00f8-\nrende om Oluf. Ragna har det\nherligt, skriver hun. Hun er bare\ngla, og det vet jeg, at \"Oluf er gla over,\nder hvor han nu er. Jeg har saa in-\nderlig ondt af hende, og om Du skrev\net Par Ord tror jeg det vilde gj\u00f8re\nhende godt. - Jeg gl\u00e6der mig over,\nat Du har skrevet en Bok, og\njeg er vis paa, at den er god.",
"confidence":0.99
}
```
### Predict with confidence scores and line-level attention maps
To run a prediction with confidence scores and plot line-level attention maps, run this command:
```shell
teklia-dan predict \
--image dan_humu_page/example.jpg \
--model dan_humu_page/model.pt \
--parameters dan_humu_page/parameters.yml \
--charset dan_humu_page/charset.pkl \
--output dan_humu_page/predict/ \
--confidence-score\
--attention-map\
```
It will create the following JSON file named `dan_humu_page/predict/example.json` and a GIF showing a word-level attention map `dan_humu_page/predict/example_line.gif`
```json
{
"text":"Hansteensgt. 2 IV 28/4 - 19\nKj\u00e6re Gerhard.\nTak for Brevet om Boken og Haven\nog Crokus og Blaaveis og tak fordi\nDu vilde be mig derut sammen\nmed Kris og Ragna. Men vet Du\nda ikke, at Kris reiste med sin S\u00f8-\nster Fru Cr\u00f8ger til Lillehammer\nnogle Dage efter Begravelsen? Hen\ndes Address er Amtsingeni\u00f8r\nCr\u00f8ger. Hun skriver at de blir\nder til lidt ut i Mai. Nu er hun\nnoksaa medtat skj\u00f8nner jeg af Sorg\nog af L\u00e6ngsel, skriver saameget r\u00f8-\nrende om Oluf. Ragna har det\nherligt, skriver hun. Hun er bare\ngla, og det vet jeg, at \"Oluf er gla over,\nder hvor han nu er. Jeg har saa in-\nderlig ondt af hende, og om Du skrev\net Par Ord tror jeg det vilde gj\u00f8re\nhende godt. - Jeg gl\u00e6der mig over,\nat Du har skrevet en Bok, og\njeg er vis paa, at den er god.",
### Predict with confidence scores and word-level attention maps
To run a prediction with confidence scores and plot word-level attention maps, run this command:
```shell
teklia-dan predict \
--image dan_humu_page/example.jpg \
--model dan_humu_page/model.pt \
--parameters dan_humu_page/parameters.yml \
--charset dan_humu_page/charset.pkl \
--output dan_humu_page/predict/ \
--confidence-score\
--attention-map\
--attention-map-level word \
--attention-map-scale 0.5
```
It will create the following JSON file named `dan_humu_page/predict/example.json` and a GIF showing a word-level attention map `dan_humu_page/predict/example_word.gif`.
```json
{
"text":"Hansteensgt. 2 IV 28/4 - 19\nKj\u00e6re Gerhard.\nTak for Brevet om Boken og Haven\nog Crokus og Blaaveis og tak fordi\nDu vilde be mig derut sammen\nmed Kris og Ragna. Men vet Du\nda ikke, at Kris reiste med sin S\u00f8-\nster Fru Cr\u00f8ger til Lillehammer\nnogle Dage efter Begravelsen? Hen\ndes Address er Amtsingeni\u00f8r\nCr\u00f8ger. Hun skriver at de blir\nder til lidt ut i Mai. Nu er hun\nnoksaa medtat skj\u00f8nner jeg af Sorg\nog af L\u00e6ngsel, skriver saameget r\u00f8-\nrende om Oluf. Ragna har det\nherligt, skriver hun. Hun er bare\ngla, og det vet jeg, at \"Oluf er gla over,\nder hvor han nu er. Jeg har saa in-\nderlig ondt af hende, og om Du skrev\net Par Ord tror jeg det vilde gj\u00f8re\nhende godt. - Jeg gl\u00e6der mig over,\nat Du har skrevet en Bok, og\njeg er vis paa, at den er god.",
### Predict with line-level attention maps and extract polygons
To run a prediction, plot line-level attention maps, and extract polygons, run this command:
```shell
teklia-dan predict \
--image dan_humu_page/example.jpg \
--model dan_humu_page/model.pt \
--parameters dan_humu_page/parameters.yml \
--charset dan_humu_page/charset.pkl \
--output dan_humu_page/predict/ \
--attention-map\
--predict-objects\
--threshold-method otsu
```
It will create the following JSON file named `dan_humu_page/predict/example.json` and a GIF showing a line-level attention map with extracted polygons `dan_humu_page/predict/example_line.gif`
```json
{
"text":"Oslo\n39 \nOresden den 24te Rasser!\nH\u00f8jst\u00e6redesherr Hartvig - assert!\nUllereder fra den f\u00f8rste tide da\njeg havder den tilfredsstillelser at vide den ar-\ndistiske ledelser af Kristiania theater i Deres\nhronder, har jeg g\u00e5t hernede med et stille\nh\u00e5b om fra Dem at modtage et forelag, sig -\nsende tils at lade \"K\u00e6rlighedens \u00abKomedie\u00bb\nopf\u00f8re fore det norske purblikum.\nEt s\u00e5dant forslag er imidlertid, imod\nforventning; ikke fremkommet, og jeg n\u00f8des der-\nfor tils self at grivbe initiativet, hvilket hervede\nsker, idet jeg\nbeder\nbet\nragte stigkket some ved denne\nskrivelse officielde indleveret til theatret. No-\nget exemplar af bogen vedlagger jeg ikke da\ndenne (i 2den udgave) med Lethed kan er -\nholdet deroppe.\nDe bet\u00e6nkeligheder, jeg i sin tid n\u00e6-\nrede mod stykkets opf\u00f8relse, er for l\u00e6nge si -\ndem forsvundne. Af mange begn er jeg kom-\nmen til den overbevisning at almenlreden\naru har f\u00e5tt sine \u00f8gne opladte for den sand -\nMed at dette arbejde i sin indersten id\u00e9 hviler\np\u00e5 et ubedinget meralsk grundlag, og brad\nstykkets hele kunstneriske struktuve ang\u00e5r,",
### Predict with an external n-gram language model
#### Build the language model
A dataset extracted with the `teklia-dan dataset extract` command should contain the files required to build a language model (in the `language_model` folder). To refine DAN's predictions with a language model, follow these steps:
1. Install and build [kenlm](https://github.com/kpu/kenlm)
1. Build a 6-gram language model using the following command
```sh
bin/lmplz --order 6 \
--text my_dataset/language_model/corpus.txt \
--arpa my_dataset/language_model/model.arpa
```
1. Update `inference_parameters.yml`. The `weight` parameter defines how much weight to give to the language model. It should be set carefully (usually between 0.5 and 2.0) as it will affect the quality of the predictions.
```yaml
parameters:
...
language_model:
model:my_dataset/language_model/model.arpa
lexicon:my_dataset/language_model/lexicon.txt
tokens:my_dataset/language_model/tokens.txt
weight:0.5
```
#### Predict
To run a prediction with the n-gram language model, run this command:
```shell
teklia-dan predict \
--image dan_humu_page/example.jpg \
--model dan_humu_page/model.pt \
--parameters dan_humu_page/parameters.yml \
--charset dan_humu_page/charset.pkl \
--use-language-model\
--output dan_humu_page/predict/
```
It will create the following JSON file named `dan_humu_page/predict/example.json`
```json
{
"text":"etc., some jeg netop idag\nholder Vask paa.\nLeien af Skj\u00f8rterne\nbestad i at jeg kj\u00f8bte\net Forkl\u00e6de til hver\naf de to Piger, some\nhavde laant os dem.\nResten var Vask af Hardan-\ngerskj\u00f8rter og et Forkl\u00e6de,\nsamt Fragt paa det Gods\n(N\u00f8i) some man sendte\nmig ubet\u00e6lt.\nIdag fik jeg hyggeligt\nFrimarkebrev fra Fosvold\nMed Hilsen\nDeres\nHulda Garborg",
"language_model":{
"text":"eet., some jeg netop idag\nholder Vask paa.\nLeien af Skj\u00f9rterne\nbestad i at jeg kj\u00f9bte\net Forkl\u00e7de til hver\naf de to Piger, some\nhavde laant os dem.\nResten var Vask af Hardan-\ngerskj\u00f9rter og et Forkl\u00e7de,\nsamt Fragt paa det Gods\n(N\u00f9i) some man sendte\nmig ubetalt.\nIdag fik jeg hyggeligt\nFrimarkebrev fra Fosvold\nMed Hilsen\nDeres\nHulda Garborg",