| `training.data.batch_size` | Mini-batch size for the training loop. | `int` | `2` |
| `training.data.load_in_memory` | Load all images in CPU memory. | `bool` | `True` |
| `training.data.worker_per_gpu` | Number of parallel processes per gpu for data loading. | `int` | `4` |
| `training.data.preprocessings` | List of pre-processing functions to apply to input images. | `list` | (see [dedicated section](#data-preprocessing)) |
| `training.data.augmentation` | Whether to use data augmentation on the training set. | `bool` | `True` (see [dedicated section](#data-augmentation)) |
### Device
| Name | Description | Type | Default |
...
...
@@ -141,7 +131,17 @@ folder/
| `training.transfer_learning.encoder` | Model to load for the encoder \[state_dict_name, checkpoint_path, learnable, strict\]. | `list` | `["encoder", "pretrained_models/dan_rimes_page.pt", True, True]` |
| `training.transfer_learning.decoder` | Model to load for the decoder \[state_dict_name, checkpoint_path, learnable, strict\]. | `list` | `["decoder", "pretrained_models/dan_rimes_page.pt", True, False]` |
| `training.data.batch_size` | Mini-batch size for the training loop. | `int` | `2` |
| `training.data.load_in_memory` | Load all images in CPU memory. | `bool` | `True` |
| `training.data.worker_per_gpu` | Number of parallel processes per gpu for data loading. | `int` | `4` |
| `training.data.preprocessings` | List of pre-processing functions to apply to input images. | `list` | (see [dedicated section](#preprocessing)) |
| `training.data.augmentation` | Whether to use data augmentation on the training set. | `bool` | `True` (see [dedicated section](#augmentation)) |
#### Preprocessing
Preprocessing is applied before training the network (see the [dedicated references](../../ref/ocr/managers/dataset.md)). The list of accepted transforms is defined in the [dedicated references](../../ref/ocr/transforms.md#dan.ocr.transforms.Preprocessing).
...
...
@@ -196,7 +196,7 @@ Usage:
]
```
### Data augmentation
#### Augmentation
Augmentation transformations are applied on-the-fly during training to artificially increase data variability.