Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
D
DAN
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Package Registry
Container Registry
Operate
Terraform modules
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Automatic Text Recognition
DAN
Commits
e2a98707
Commit
e2a98707
authored
1 year ago
by
Mélodie Boillet
Committed by
Yoann Schneider
1 year ago
Browse files
Options
Downloads
Patches
Plain Diff
Remove unused transforms
parent
2fa7905c
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!152
Remove unused transforms
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
dan/transforms.py
+3
-131
3 additions, 131 deletions
dan/transforms.py
with
3 additions
and
131 deletions
dan/transforms.py
+
3
−
131
View file @
e2a98707
...
@@ -8,7 +8,7 @@ import cv2
...
@@ -8,7 +8,7 @@ import cv2
import
numpy
as
np
import
numpy
as
np
from
cv2
import
dilate
,
erode
,
normalize
from
cv2
import
dilate
,
erode
,
normalize
from
numpy
import
random
from
numpy
import
random
from
PIL
import
Image
,
ImageOps
from
PIL
import
Image
from
torchvision.transforms
import
(
from
torchvision.transforms
import
(
ColorJitter
,
ColorJitter
,
GaussianBlur
,
GaussianBlur
,
...
@@ -20,24 +20,12 @@ from torchvision.transforms.functional import InterpolationMode
...
@@ -20,24 +20,12 @@ from torchvision.transforms.functional import InterpolationMode
from
dan.utils
import
rand
,
rand_uniform
,
randint
from
dan.utils
import
rand
,
rand_uniform
,
randint
class
SignFlipping
:
"""
Color inversion
"""
def
__init__
(
self
):
pass
def
__call__
(
self
,
x
):
return
ImageOps
.
invert
(
x
)
class
DPIAdjusting
:
class
DPIAdjusting
:
"""
"""
Resolution modification
Resolution modification
"""
"""
def
__init__
(
self
,
factor
,
preserve_ratio
):
def
__init__
(
self
,
factor
):
self
.
factor
=
factor
self
.
factor
=
factor
def
__call__
(
self
,
x
):
def
__call__
(
self
,
x
):
...
@@ -179,31 +167,6 @@ class ElasticDistortion:
...
@@ -179,31 +167,6 @@ class ElasticDistortion:
return
Image
.
fromarray
(
dst
.
astype
(
np
.
uint8
))
return
Image
.
fromarray
(
dst
.
astype
(
np
.
uint8
))
class
Tightening
:
"""
Reduce interline spacing
"""
def
__init__
(
self
,
color
=
255
,
remove_proba
=
0.75
):
self
.
color
=
color
self
.
remove_proba
=
remove_proba
def
__call__
(
self
,
x
):
x_np
=
np
.
array
(
x
)
interline_indices
=
[
np
.
all
(
line
==
255
)
for
line
in
x_np
]
indices_to_removed
=
np
.
logical_and
(
np
.
random
.
choice
(
[
True
,
False
],
size
=
len
(
x_np
),
replace
=
True
,
p
=
[
self
.
remove_proba
,
1
-
self
.
remove_proba
],
),
interline_indices
,
)
new_x
=
x_np
[
np
.
logical_not
(
indices_to_removed
)]
return
Image
.
fromarray
(
new_x
.
astype
(
np
.
uint8
))
def
get_list_augmenters
(
img
,
aug_configs
,
fill_value
):
def
get_list_augmenters
(
img
,
aug_configs
,
fill_value
):
"""
"""
Randomly select a list of data augmentation techniques to used based on aug_configs
Randomly select a list of data augmentation techniques to used based on aug_configs
...
@@ -236,9 +199,7 @@ def get_list_augmenters(img, aug_configs, fill_value):
...
@@ -236,9 +199,7 @@ def get_list_augmenters(img, aug_configs, fill_value):
and
factor
*
img
.
size
[
1
]
<
aug_config
[
"
min_height
"
]
and
factor
*
img
.
size
[
1
]
<
aug_config
[
"
min_height
"
]
)
)
)
)
augmenters
.
append
(
augmenters
.
append
(
DPIAdjusting
(
factor
))
DPIAdjusting
(
factor
,
preserve_ratio
=
aug_config
[
"
preserve_ratio
"
])
)
elif
aug_config
[
"
type
"
]
==
"
zoom_ratio
"
:
elif
aug_config
[
"
type
"
]
==
"
zoom_ratio
"
:
ratio_h
=
rand_uniform
(
aug_config
[
"
min_ratio_h
"
],
aug_config
[
"
max_ratio_h
"
])
ratio_h
=
rand_uniform
(
aug_config
[
"
min_ratio_h
"
],
aug_config
[
"
max_ratio_h
"
])
...
@@ -351,94 +312,6 @@ def apply_data_augmentation(img, da_config):
...
@@ -351,94 +312,6 @@ def apply_data_augmentation(img, da_config):
return
img
return
img
def
apply_transform
(
img
,
transform
):
"""
Apply data augmentation technique on input image
"""
img
=
img
[:,
:,
0
]
if
img
.
shape
[
2
]
==
1
else
img
img
=
Image
.
fromarray
(
img
)
img
=
transform
(
img
)
img
=
np
.
array
(
img
)
return
np
.
expand_dims
(
img
,
axis
=
2
)
if
len
(
img
.
shape
)
==
2
else
img
def
line_aug_config
(
proba_use_da
,
p
):
return
{
"
order
"
:
"
random
"
,
"
proba
"
:
proba_use_da
,
"
augmentations
"
:
[
{
"
type
"
:
"
dpi
"
,
"
proba
"
:
p
,
"
min_factor
"
:
0.5
,
"
max_factor
"
:
1.5
,
"
preserve_ratio
"
:
True
,
},
{
"
type
"
:
"
perspective
"
,
"
proba
"
:
p
,
"
min_factor
"
:
0
,
"
max_factor
"
:
0.4
,
},
{
"
type
"
:
"
elastic_distortion
"
,
"
proba
"
:
p
,
"
min_alpha
"
:
0.5
,
"
max_alpha
"
:
1
,
"
min_sigma
"
:
1
,
"
max_sigma
"
:
10
,
"
min_kernel_size
"
:
3
,
"
max_kernel_size
"
:
9
,
},
{
"
type
"
:
"
dilation_erosion
"
,
"
proba
"
:
p
,
"
min_kernel
"
:
1
,
"
max_kernel
"
:
3
,
"
iterations
"
:
1
,
},
{
"
type
"
:
"
color_jittering
"
,
"
proba
"
:
p
,
"
factor_hue
"
:
0.2
,
"
factor_brightness
"
:
0.4
,
"
factor_contrast
"
:
0.4
,
"
factor_saturation
"
:
0.4
,
},
{
"
type
"
:
"
gaussian_blur
"
,
"
proba
"
:
p
,
"
min_kernel
"
:
3
,
"
max_kernel
"
:
5
,
"
min_sigma
"
:
3
,
"
max_sigma
"
:
5
,
},
{
"
type
"
:
"
gaussian_noise
"
,
"
proba
"
:
p
,
"
std
"
:
0.5
,
},
{
"
type
"
:
"
sharpen
"
,
"
proba
"
:
p
,
"
min_alpha
"
:
0
,
"
max_alpha
"
:
1
,
"
min_strength
"
:
0
,
"
max_strength
"
:
1
,
},
{
"
type
"
:
"
zoom_ratio
"
,
"
proba
"
:
p
,
"
min_ratio_h
"
:
0.8
,
"
max_ratio_h
"
:
1
,
"
min_ratio_w
"
:
0.99
,
"
max_ratio_w
"
:
1
,
"
keep_dim
"
:
True
,
},
],
}
def
aug_config
(
proba_use_da
,
p
):
def
aug_config
(
proba_use_da
,
p
):
return
{
return
{
"
order
"
:
"
random
"
,
"
order
"
:
"
random
"
,
...
@@ -449,7 +322,6 @@ def aug_config(proba_use_da, p):
...
@@ -449,7 +322,6 @@ def aug_config(proba_use_da, p):
"
proba
"
:
p
,
"
proba
"
:
p
,
"
min_factor
"
:
0.75
,
"
min_factor
"
:
0.75
,
"
max_factor
"
:
1
,
"
max_factor
"
:
1
,
"
preserve_ratio
"
:
True
,
},
},
{
{
"
type
"
:
"
perspective
"
,
"
type
"
:
"
perspective
"
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment