Skip to content
Snippets Groups Projects
Commit e8700921 authored by Solene Tarride's avatar Solene Tarride
Browse files

Update documentation

parent 453c2aa9
No related branches found
No related tags found
No related merge requests found
......@@ -15,6 +15,7 @@ This page lists data augmentation transforms used in DAN.
| CPU time (seconds/10 images) | 0.44 (3013x128 pixels) / 0.86 (1116x581 pixels) |
### PieceWise Affine
:warning: This transform is temporarily removed from the pipeline until [this issue](https://github.com/albumentations-team/albumentations/issues/1442) is fixed.
| | PieceWise Affine |
| ---------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
......@@ -126,9 +127,8 @@ This page lists data augmentation transforms used in DAN.
## Full augmentation pipeline
* Data augmentation is applied with a probability of 0.9.
* In this case, two transformations are randomly selected to be applied.
* `ElasticTransform` and `PieceWiseAffine` cannot be applied on the same image.
* Data augmentation is applied with a probability of 0.9
* In this case, two transformations are randomly selected to be applied
* Reproducibility is possible by setting `random.seed` and `np.random.seed` (already done in `dan/ocr/document/train.py`)
* Examples with new pipeline:
......
......@@ -96,18 +96,7 @@ transforms = SomeOf(
Perspective(scale=(0.05, 0.09), fit_output=True),
GaussianBlur(sigma_limit=2.5),
GaussNoise(var_limit=50**2),
ColorJitter(contrast=0.2, brightness=0.2, saturation=0.2, hue=0.2),
OneOf(
[
ElasticTransform(
alpha=20.0,
sigma=5.0,
alpha_affine=1.0,
border_mode=0,
),
PiecewiseAffine(scale=(0.01, 0.04), nb_rows=1, nb_cols=4),
]
),
ColorJitter(contrast=0.2, brightness=0.2, saturation=0.ElasticTransform(alpha=20.0, sigma=5.0, alpha_affine=1.0, border_mode=0),
Sharpen(alpha=(0.0, 1.0)),
ErosionDilation(min_kernel=1, max_kernel=4, iterations=1),
Affine(shear={"x": (-20, 20), "y": (0, 0)}),
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment