Incorrect WER computation in `display_worst_results`
When evaluating DAN, the WER computed in the 5 worst prediction(s)
section is incorrect. In this case it should be 0.
Image name | WER | Alignment between ground truth - prediction |
---|---|---|
0c03f08f-0da5-4827-9fff-05c891567aa9.jpg | 8.79 | 18.1Ⓔ sⒶ fⓘ ∅ CⒼ 21Ⓒ 770Ⓚ xxⓊ ∅ ∅ Marieⓔ POULETⓈ Jeanⓒ Marieⓐ ECARDⓆ |
18.1Ⓔ sⒶ fⓘ ∅ CⒼ 21Ⓒ 770Ⓚ xxⓊ ∅ ∅ Marieⓔ POULETⓈ Jeanⓒ Marieⓐ ECARDⓆ |
This is because the wrong value is stored in inferences
. We are saving the micro-averaged WER (display_values
), when it should be the WER corresponding to the current batch.
inferences.extend(
map(
Inference,
batch_data["names"],
batch_values["str_y"],
batch_values["str_x"],
batch_values.get("str_lm", repeat("")),
repeat(display_values["wer"]),
)
)