Skip to content
Snippets Groups Projects

Make normalization optional

Merged Manon Blanco requested to merge optional-normalization into main
All threads resolved!
2 files
+ 38
8
Compare changes
  • Side-by-side
  • Inline
Files
2
@@ -109,8 +109,8 @@ class DAN:
)
self.mean, self.std = (
torch.tensor(parameters["mean"]) / 255,
torch.tensor(parameters["std"]) / 255,
torch.tensor(parameters["mean"]) / 255 if "mean" in parameters else None,
torch.tensor(parameters["std"]) / 255 if "std" in parameters else None,
)
self.preprocessing_transforms = get_preprocessing_transforms(
parameters.get("preprocessings", [])
@@ -124,11 +124,21 @@ class DAN:
"""
image = read_image(path)
preprocessed_image = self.preprocessing_transforms(image)
normalized_image = torch.zeros(preprocessed_image.shape)
for ch in range(preprocessed_image.shape[0]):
if self.mean is None and self.std is None:
return preprocessed_image, preprocessed_image
size = preprocessed_image.shape
normalized_image = torch.zeros(size)
mean = self.mean if self.mean is not None else torch.zeros(size[0])
std = self.std if self.std is not None else torch.ones(size[0])
for ch in range(size[0]):
normalized_image[ch, :, :] = (
preprocessed_image[ch, :, :] - self.mean[ch]
) / self.std[ch]
preprocessed_image[ch, :, :] - mean[ch]
) / std[ch]
return preprocessed_image, normalized_image
def predict(
Loading