Skip to content
Snippets Groups Projects
main.py 23.4 KiB
Newer Older
Martin's avatar
Martin committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import argparse
import os
import random
from enum import Enum
from pathlib import Path

import cv2
import numpy as np
import tqdm
from apistar.exceptions import ErrorResponse
from arkindex import ArkindexClient, options_from_env

from kaldi_data_generator.image_utils import (
    determine_rotate_angle,
    download_image,
    extract_min_area_rect_image,
    extract_polygon_image,
    rotate,
    trim,
)
from kaldi_data_generator.utils import logger, write_file

api_client = ArkindexClient(**options_from_env())

SEED = 42
random.seed(SEED)
MANUAL = "manual"
TEXT_LINE = "text_line"
WHITE = 255


class Extraction(Enum):
    boundingRect: int = 0
    polygon: int = 1
    # minimum containing rectangle with an angle (cv2.min_area_rect)
    min_area_rect: int = 2
    deskew_polygon: int = 3
    deskew_min_area_rect: int = 4


class HTRDataGenerator:
    def __init__(
        self,
        module,
        dataset_name="foo",
        out_dir_base="/tmp/kaldi_data",
        grayscale=True,
        extraction=Extraction.boundingRect,
        accepted_slugs=None,
        accepted_classes=None,
        filter_printed=False,
        skip_vertical_lines=False,
        accepted_worker_version_ids=None,
        transcription_type=TEXT_LINE,
        max_deskew_angle=45,
    ):

        self.module = module
        self.out_dir_base = out_dir_base
        self.dataset_name = dataset_name
        self.grayscale = grayscale
        self.extraction_mode = extraction
        self.accepted_slugs = accepted_slugs
        self.should_filter_by_slug = bool(self.accepted_slugs)
        self.accepted_classes = accepted_classes
        self.should_filter_by_class = bool(self.accepted_classes)
        self.accepted_worker_version_ids = accepted_worker_version_ids
        self.should_filter_by_worker = bool(self.accepted_worker_version_ids)
        self.should_filter_printed = filter_printed
        self.transcription_type = transcription_type
        self.skip_vertical_lines = skip_vertical_lines
        self.skipped_pages_count = 0
        self.skipped_vertical_lines_count = 0
        self.accepted_lines_count = 0
        self.max_deskew_angle = max_deskew_angle

        if MANUAL in self.accepted_worker_version_ids:
            self.accepted_worker_version_ids[
                self.accepted_worker_version_ids.index(MANUAL)
            ] = None

        if self.module == "kraken":
            self.out_line_dir = out_dir_base
            os.makedirs(self.out_line_dir, exist_ok=True)
        else:
            self.out_line_text_dir = os.path.join(
                self.out_dir_base, "Transcriptions", self.dataset_name
            )
            os.makedirs(self.out_line_text_dir, exist_ok=True)
            self.out_line_img_dir = os.path.join(
                self.out_dir_base, "Lines", self.dataset_name
            )
            os.makedirs(self.out_line_img_dir, exist_ok=True)

    def get_image(self, image_url: str, page_id: str) -> "np.ndarray":
        out_full_img_dir = os.path.join(self.out_dir_base, "full", page_id)
        os.makedirs(out_full_img_dir, exist_ok=True)
        out_full_img_path = os.path.join(out_full_img_dir, "full.jpg")
        if self.grayscale:
            download_image(image_url).convert("L").save(
                out_full_img_path, format="jpeg"
            )
            img = cv2.imread(out_full_img_path, cv2.IMREAD_GRAYSCALE)
        else:
            download_image(image_url).save(out_full_img_path, format="jpeg")
            img = cv2.imread(out_full_img_path)
        return img

    def get_accepted_zones(self, page_id: str):
        try:
            accepted_zones = []
            for elt in api_client.paginate(
                "ListElementChildren", id=page_id, with_best_classes=True
            ):
                printed = True
                for classification in elt["best_classes"]:
                    if classification["ml_class"]["name"] == "handwritten":
                        printed = False
                for classification in elt["best_classes"]:
                    if classification["ml_class"]["name"] in self.accepted_classes:
                        if self.should_filter_printed:
                            if not printed:
                                accepted_zones.append(elt["zone"]["id"])
                        else:
                            accepted_zones.append(elt["zone"]["id"])
            logger.info(
                "Number of accepted zone for page {} : {}".format(
                    page_id, len(accepted_zones)
                )
            )
            return accepted_zones
        except ErrorResponse as e:
            logger.info(
                f"ListTranscriptions failed {e.status_code} - {e.title} - {e.content} - {page_id}"
            )
            raise e

    def get_transcriptions(self, page_id: str, accepted_zones):
        count = 0
        count_skipped = 0
        lines = []
        try:
            for res in api_client.paginate(
                "ListTranscriptions", id=page_id, recursive=True
            ):
                if (
                    self.should_filter_by_slug
                    and res["source"]["slug"] not in self.accepted_slugs
                ):
                    continue
                if (
                    self.should_filter_by_worker
                    and res["worker_version_id"] not in self.accepted_worker_version_ids
                ):
                    continue
                if (
                    self.should_filter_by_class
                    and res["element"]["zone"]["id"] not in accepted_zones
                ):
                    continue
                if res["element"]["type"] != self.transcription_type:
                    continue

                text = res["text"]
                if not text or not text.strip():
                    continue

                if "zone" in res:
                    polygon = res["zone"]["polygon"]
                elif "element" in res:
                    polygon = res["element"]["zone"]["polygon"]
                else:
                    raise ValueError(f"Data problem with polygon :: {res}")

                polygon = np.asarray(polygon).clip(0)
                [x, y, w, h] = cv2.boundingRect(polygon)
                if self.skip_vertical_lines:
                    if h > w:
                        count_skipped += 1
                        continue
                lines.append(((x, y, w, h), polygon, text))
                count += 1
            return (lines, count, count_skipped)

        except ErrorResponse as e:
            logger.info(
                f"ListTranscriptions failed {e.status_code} - {e.title} - {e.content} - {page_id}"
            )
            raise e

    def _save_line_image(self, page_id, i, line_img, manifest_fp=None):
        if self.module == "kraken":
            cv2.imwrite(f"{self.out_line_dir}/{page_id}_{i}.png", line_img)
            manifest_fp.write(f"{page_id}_{i}.png\n")
        else:
            cv2.imwrite(f"{self.out_line_img_dir}/{page_id}_{i}.jpg", line_img)

    def extract_lines(self, page_id: str, image_data: dict):
        if self.should_filter_by_class:
            accepted_zones = self.get_accepted_zones(page_id)
        else:
            accepted_zones = []
        lines, count, count_skipped = self.get_transcriptions(page_id, accepted_zones)

        if count == 0:
            self.skipped_pages_count += 1
            logger.info(f"Page {page_id} skipped, because it has no lines")
            return

        logger.debug(f"Total num of lines {count + count_skipped}")
        logger.debug(f"Num of accepted lines {count}")
        logger.debug(f"Num of skipped lines {count_skipped}")

        self.skipped_vertical_lines_count += count_skipped
        self.accepted_lines_count += count

        full_image_url = image_data["s3_url"]
        if full_image_url is None:
            full_image_url = image_data["url"] + "/full/full/0/default.jpg"

        img = self.get_image(full_image_url, page_id=page_id)

        # sort vertically then horizontally
        sorted_lines = sorted(lines, key=lambda key: (key[0][1], key[0][0]))

        if self.module == "kraken":
            manifest_fp = open(f"{self.out_line_dir}/manifest.txt", "a")
            # append to file, not re-write it
        else:
            # not needed for kaldi
            manifest_fp = None

        if self.extraction_mode == Extraction.boundingRect:
            for i, ((x, y, w, h), polygon, text) in enumerate(sorted_lines):
                cropped = img[y : y + h, x : x + w].copy()
                self._save_line_image(page_id, i, cropped, manifest_fp)

        elif self.extraction_mode == Extraction.polygon:
            for i, (rect, polygon, text) in enumerate(sorted_lines):
                polygon_img = extract_polygon_image(img, polygon=polygon, rect=rect)
                self._save_line_image(page_id, i, polygon_img, manifest_fp)

        elif self.extraction_mode == Extraction.min_area_rect:
            for i, (rect, polygon, text) in enumerate(sorted_lines):
                min_rect_img = extract_min_area_rect_image(
                    img, polygon=polygon, rect=rect
                )

                self._save_line_image(page_id, i, min_rect_img, manifest_fp)

        elif self.extraction_mode == Extraction.deskew_polygon:
            for i, (rect, polygon, text) in enumerate(sorted_lines):
                # get angle from min area rect
                rotate_angle = determine_rotate_angle(polygon)

                if abs(rotate_angle) > self.max_deskew_angle:
                    logger.warning(
                        f"Deskew angle ({rotate_angle}) over the limit ({self.max_deskew_angle}), won't rotate"
                    )
                    rotate_angle = 0

                # get polygon image
                polygon_img = extract_polygon_image(img, polygon=polygon, rect=rect)

                trimmed_img = self.rotate_and_trim(polygon_img, rotate_angle)

                self._save_line_image(page_id, i, trimmed_img, manifest_fp)

        elif self.extraction_mode == Extraction.deskew_min_area_rect:
            for i, (rect, polygon, text) in enumerate(sorted_lines):
                # get angle from min area rect
                rotate_angle = determine_rotate_angle(polygon)

                if abs(rotate_angle) > self.max_deskew_angle:
                    logger.warning(
                        f"Deskew angle ({rotate_angle}) over the limit ({self.max_deskew_angle}), won't rotate"
                    )
                    rotate_angle = 0

                min_rect_img = extract_min_area_rect_image(
                    img, polygon=polygon, rect=rect
                )

                trimmed_img = self.rotate_and_trim(min_rect_img, rotate_angle)

                self._save_line_image(page_id, i, trimmed_img, manifest_fp)
        else:
            raise ValueError(f"Unsupported extraction mode: {self.extraction_mode}")

        if self.module == "kraken":
            manifest_fp.close()

        for i, (rect, polygon, text) in enumerate(sorted_lines):
            if self.module == "kraken":
                write_file(f"{self.out_line_dir}/{page_id}_{i}.gt.txt", text)
            else:
                write_file(f"{self.out_line_text_dir}/{page_id}_{i}.txt", text)

    def rotate_and_trim(self, img, rotate_angle):
        """
        Rotate image by given an angle and trim extra whitespace left after rotating
        """
        if self.grayscale:
            background = WHITE
        else:
            background = (WHITE, WHITE, WHITE)

        # rotate polygon image
        deskewed_img = rotate(img, rotate_angle, background)
        # trim extra whitespace left after rotating
        trimmed_img = trim(deskewed_img, background)
        trimmed_img = np.array(trimmed_img)

        return trimmed_img

    def run_pages(self, pages: list):
        if all(isinstance(n, str) for n in pages):
            for page in pages:
                elt = api_client.request("RetrieveElement", id=page)
                page_id = elt["id"]
                image_data = elt["zone"]["image"]
                logger.debug(f"Page {page_id}")
                self.extract_lines(page_id, image_data)
        else:
            for page in tqdm.tqdm(pages):
                page_id = page["id"]
                image_data = page["zone"]["image"]
                logger.debug(f"Page {page_id}")
                self.extract_lines(page_id, image_data)

    def run_volumes(self, volume_ids: list):
        for volume_id in tqdm.tqdm(volume_ids):
            logger.info(f"Volume {volume_id}")
            pages = [
                page
                for page in api_client.paginate(
                    "ListElementChildren", id=volume_id, recursive=True, type="page"
                )
            ]
            self.run_pages(pages)

    def run_folders(self, element_ids: list, volume_type: str):
        for elem_id in tqdm.tqdm(element_ids):
            logger.info(f"Folder {elem_id}")
            vol_ids = [
                page["id"]
                for page in api_client.paginate(
                    "ListElementChildren", id=elem_id, recursive=True, type=volume_type
                )
            ]
            self.run_volumes(vol_ids)

    def run_corpora(self, corpus_ids: list, volume_type: str):
        for corpus_id in tqdm.tqdm(corpus_ids):
            logger.info(f"Corpus {corpus_id}")
            vol_ids = [
                vol["id"]
                for vol in api_client.paginate(
                    "ListElements", corpus=corpus_id, type=volume_type
                )
            ]
            self.run_volumes(vol_ids)


class Split(Enum):
    Train: int = 0
    Test: int = 1
    Validation: int = 2

    @property
    def short_name(self) -> str:
        if self == self.Validation:
            return "val"
        return self.name.lower()


class KaldiPartitionSplitter:
    def __init__(
        self,
        out_dir_base="/tmp/kaldi_data",
        split_train_ratio=0.8,
        split_test_ratio=0.1,
        use_existing_split=False,
    ):
        self.out_dir_base = out_dir_base
        self.split_train_ratio = split_train_ratio
        self.split_test_ratio = split_test_ratio
        self.split_val_ratio = 1 - self.split_train_ratio - self.split_test_ratio
        self.use_existing_split = use_existing_split

    def page_level_split(self, line_ids: list) -> dict:
        # need to sort again, because `set` will lose the order
        page_ids = sorted({"_".join(line_id.split("_")[:-1]) for line_id in line_ids})
        random.Random(SEED).shuffle(page_ids)
        page_count = len(page_ids)

        train_page_ids = page_ids[: round(page_count * self.split_train_ratio)]
        page_ids = page_ids[round(page_count * self.split_train_ratio) :]

        test_page_ids = page_ids[: round(page_count * self.split_test_ratio)]
        page_ids = page_ids[round(page_count * self.split_test_ratio) :]

        val_page_ids = page_ids

        page_dict = {page_id: Split.Train.value for page_id in train_page_ids}
        page_dict.update({page_id: Split.Test.value for page_id in test_page_ids})
        page_dict.update({page_id: Split.Validation.value for page_id in val_page_ids})
        return page_dict

    def existing_split(self, line_ids: list) -> list:
        split_dict = {split.short_name: [] for split in Split}
        for line_id in line_ids:
            split_prefix = line_id.split("/")[0].lower()
            split_dict[split_prefix].append(line_id)
        splits = [split_dict[split.short_name] for split in Split]
        return splits

    def create_partitions(self):
        logger.info("Creating partitions")
        lines_path = Path(f"{self.out_dir_base}/Lines")
        line_ids = [
            str(file.relative_to(lines_path).with_suffix(""))
            for file in sorted(lines_path.glob("**/*.jpg"))
        ]

        if self.use_existing_split:
            logger.info("Using existing split")
            datasets = self.existing_split(line_ids)
        else:
            page_dict = self.page_level_split(line_ids)
            datasets = [[] for _ in range(3)]
            for line_id in line_ids:
                page_id = "_".join(line_id.split("_")[:-1])
                split_id = page_dict[page_id]
                datasets[split_id].append(line_id)

        partitions_dir = os.path.join(self.out_dir_base, "Partitions")
        os.makedirs(partitions_dir, exist_ok=True)
        for i, dataset in enumerate(datasets):
            if not dataset:
                logger.info(f"Partition {Split(i).name} is empty! Skipping..")
                continue
            file_name = f"{partitions_dir}/{Split(i).name}Lines.lst"
            write_file(file_name, "\n".join(dataset) + "\n")


def create_parser():
    parser = argparse.ArgumentParser(
        description="Script to generate Kaldi or kraken training data from annotations from Arkindex",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    parser.add_argument(
        "-f",
        "--format",
        type=str,
        help="is the data generated going to be used for kaldi or kraken",
    )
    parser.add_argument(
        "-n",
        "--dataset_name",
        type=str,
        help="Name of the dataset being created for kaldi or kraken "
        "(useful for distinguishing different datasets when in Lines or Transcriptions directory)",
    )
    parser.add_argument(
        "-o", "--out_dir", type=str, required=True, help="output directory"
    )
    parser.add_argument(
        "--train_ratio",
        type=float,
        default=0.8,
        help="Ratio of pages to be used in train (between 0 and 1)",
    )
    parser.add_argument(
        "--test_ratio",
        type=float,
        default=0.1,
        help="Ratio of pages to be used in test (between 0 and 1 - train_ratio)",
    )
    parser.add_argument(
        "--use_existing_split",
        action="store_true",
        default=False,
        help="Use an existing split instead of random. "
        "Expecting line_ids to be prefixed with (train, val and test)",
    )
    parser.add_argument(
        "--split_only",
        "--no_download",
        action="store_true",
        default=False,
        help="Create the split from already downloaded lines, don't download the lines",
    )
    parser.add_argument(
        "--no_split",
        action="store_true",
        default=False,
        help="No splitting of the data to be done just download the line in the right format",
    )

    parser.add_argument(
        "-e",
        "--extraction_mode",
        type=lambda x: Extraction[x],
        default=Extraction.boundingRect,
        help=f"Mode for extracting the line images: {[e.name for e in Extraction]}",
    )

    parser.add_argument(
        "--max_deskew_angle",
        type=int,
        default=45,
        help="Maximum angle by which deskewing is allowed to rotate the line image. "
        "If the angle determined by deskew tool is bigger than max "
        "then that line won't be deskewed/rotated.",
    )

    parser.add_argument(
        "--transcription_type",
        type=str,
        default="text_line",
        help="Which type of elements' transcriptions to use? (page, paragraph, text_line, etc)",
    )

    group = parser.add_mutually_exclusive_group(required=False)
    group.add_argument(
        "--grayscale", action="store_true", help="Convert images to grayscale"
    )
    group.add_argument("--color", action="store_false", help="Use color images")
    parser.set_defaults(grayscale=True)

    parser.add_argument(
        "--corpora",
        nargs="*",
        help="List of corpus ids to be used, separated by spaces",
    )
    parser.add_argument(
        "--folders",
        type=str,
        nargs="*",
        help="List of folder ids to be used, separated by spaces. "
        "Elements of `volume_type` will be searched recursively in these folders",
    )
    parser.add_argument(
        "--volumes",
        nargs="*",
        help="List of volume ids to be used, separated by spaces",
    )
    parser.add_argument(
        "--pages", nargs="*", help="List of page ids to be used, separated by spaces"
    )
    parser.add_argument(
        "-v",
        "--volume_type",
        type=str,
        default="volume",
        help="Volumes (1 level above page) may have a different name on corpora",
    )
    parser.add_argument(
        "--skip_vertical_lines",
        action="store_true",
        default=False,
        help="skips vertical lines when downloading",
    )

    parser.add_argument(
        "--accepted_slugs",
        nargs="*",
        help="List of accepted slugs for downloading transcriptions",
    )

    parser.add_argument(
        "--accepted_classes",
        nargs="*",
        help="List of accepted ml_class names. Filter lines by class of related elements",
    )

    parser.add_argument(
        "--accepted_worker_version_ids",
        nargs="*",
        default=[],
        help="List of accepted worker version ids. Filter lines by worker version ids of related elements"
        "Use `--accepted_worker_version_ids manual` to get only manual transcriptions",
    )

    parser.add_argument(
        "--filter_printed",
        action="store_true",
        help="Filter lines annotated as printed",
    )
    return parser


def main():
    parser = create_parser()
    args = parser.parse_args()

    if not args.dataset_name and not args.split_only and not args.format == "kraken":
        parser.error("--dataset_name must be specified (unless --split-only)")

    logger.info(f"ARGS {args} \n")

    if not args.split_only:
        data_generator = HTRDataGenerator(
            module=args.format,
            dataset_name=args.dataset_name,
            out_dir_base=args.out_dir,
            grayscale=args.grayscale,
            extraction=args.extraction_mode,
            accepted_slugs=args.accepted_slugs,
            accepted_classes=args.accepted_classes,
            filter_printed=args.filter_printed,
            skip_vertical_lines=args.skip_vertical_lines,
            transcription_type=args.transcription_type,
            accepted_worker_version_ids=args.accepted_worker_version_ids,
            max_deskew_angle=args.max_deskew_angle,
        )

        # extract all the lines and transcriptions
        if args.pages:
            data_generator.run_pages(args.pages)
        if args.volumes:
            data_generator.run_volumes(args.volumes)
        if args.folders:
            data_generator.run_folders(args.folders, args.volume_type)
        if args.corpora:
            data_generator.run_corpora(args.corpora, args.volume_type)
        if data_generator.skipped_vertical_lines_count > 0:
            logger.info(
                f"Number of skipped pages: {data_generator.skipped_pages_count}"
            )
            skipped_ratio = data_generator.skipped_vertical_lines_count / (
                data_generator.skipped_vertical_lines_count
                + data_generator.accepted_lines_count
            )
            logger.info(
                f"Skipped {data_generator.skipped_vertical_lines_count} vertical lines ({skipped_ratio}/1.0)"
            )
    else:
        logger.info("Creating a split from already downloaded files")
    if not args.no_split:
        kaldi_partitioner = KaldiPartitionSplitter(
            out_dir_base=args.out_dir,
            split_train_ratio=args.train_ratio,
            split_test_ratio=args.test_ratio,
            use_existing_split=args.use_existing_split,
        )

        # create partitions from all the extracted data
        kaldi_partitioner.create_partitions()
    else:
        logger.info("No split to be done")

    logger.info("DONE")


if __name__ == "__main__":
    main()