Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import os
import random
from enum import Enum
from pathlib import Path
import cv2
import numpy as np
import tqdm
from apistar.exceptions import ErrorResponse
from arkindex import ArkindexClient, options_from_env
from kaldi_data_generator.image_utils import (
determine_rotate_angle,
download_image,
extract_min_area_rect_image,
extract_polygon_image,
rotate,
trim,
)
from kaldi_data_generator.utils import logger, write_file
api_client = ArkindexClient(**options_from_env())
SEED = 42
random.seed(SEED)
MANUAL = "manual"
TEXT_LINE = "text_line"
WHITE = 255
class Extraction(Enum):
boundingRect: int = 0
polygon: int = 1
# minimum containing rectangle with an angle (cv2.min_area_rect)
min_area_rect: int = 2
deskew_polygon: int = 3
deskew_min_area_rect: int = 4
class HTRDataGenerator:
def __init__(
self,
module,
dataset_name="foo",
out_dir_base="/tmp/kaldi_data",
grayscale=True,
extraction=Extraction.boundingRect,
accepted_slugs=None,
accepted_classes=None,
filter_printed=False,
skip_vertical_lines=False,
accepted_worker_version_ids=None,
transcription_type=TEXT_LINE,
max_deskew_angle=45,
):
self.module = module
self.out_dir_base = out_dir_base
self.dataset_name = dataset_name
self.grayscale = grayscale
self.extraction_mode = extraction
self.accepted_slugs = accepted_slugs
self.should_filter_by_slug = bool(self.accepted_slugs)
self.accepted_classes = accepted_classes
self.should_filter_by_class = bool(self.accepted_classes)
self.accepted_worker_version_ids = accepted_worker_version_ids
self.should_filter_by_worker = bool(self.accepted_worker_version_ids)
self.should_filter_printed = filter_printed
self.transcription_type = transcription_type
self.skip_vertical_lines = skip_vertical_lines
self.skipped_pages_count = 0
self.skipped_vertical_lines_count = 0
self.accepted_lines_count = 0
self.max_deskew_angle = max_deskew_angle
if MANUAL in self.accepted_worker_version_ids:
self.accepted_worker_version_ids[
self.accepted_worker_version_ids.index(MANUAL)
] = None
if self.module == "kraken":
self.out_line_dir = out_dir_base
os.makedirs(self.out_line_dir, exist_ok=True)
else:
self.out_line_text_dir = os.path.join(
self.out_dir_base, "Transcriptions", self.dataset_name
)
os.makedirs(self.out_line_text_dir, exist_ok=True)
self.out_line_img_dir = os.path.join(
self.out_dir_base, "Lines", self.dataset_name
)
os.makedirs(self.out_line_img_dir, exist_ok=True)
def get_image(self, image_url: str, page_id: str) -> "np.ndarray":
out_full_img_dir = os.path.join(self.out_dir_base, "full", page_id)
os.makedirs(out_full_img_dir, exist_ok=True)
out_full_img_path = os.path.join(out_full_img_dir, "full.jpg")
if self.grayscale:
download_image(image_url).convert("L").save(
out_full_img_path, format="jpeg"
)
img = cv2.imread(out_full_img_path, cv2.IMREAD_GRAYSCALE)
else:
download_image(image_url).save(out_full_img_path, format="jpeg")
img = cv2.imread(out_full_img_path)
return img
def get_accepted_zones(self, page_id: str):
try:
accepted_zones = []
for elt in api_client.paginate(
"ListElementChildren", id=page_id, with_best_classes=True
):
printed = True
for classification in elt["best_classes"]:
if classification["ml_class"]["name"] == "handwritten":
printed = False
for classification in elt["best_classes"]:
if classification["ml_class"]["name"] in self.accepted_classes:
if self.should_filter_printed:
if not printed:
accepted_zones.append(elt["zone"]["id"])
else:
accepted_zones.append(elt["zone"]["id"])
logger.info(
"Number of accepted zone for page {} : {}".format(
page_id, len(accepted_zones)
)
)
return accepted_zones
except ErrorResponse as e:
logger.info(
f"ListTranscriptions failed {e.status_code} - {e.title} - {e.content} - {page_id}"
)
raise e
def get_transcriptions(self, page_id: str, accepted_zones):
count = 0
count_skipped = 0
lines = []
try:
for res in api_client.paginate(
"ListTranscriptions", id=page_id, recursive=True
):
if (
self.should_filter_by_slug
and res["source"]["slug"] not in self.accepted_slugs
):
continue
if (
self.should_filter_by_worker
and res["worker_version_id"] not in self.accepted_worker_version_ids
):
continue
if (
self.should_filter_by_class
and res["element"]["zone"]["id"] not in accepted_zones
):
continue
if res["element"]["type"] != self.transcription_type:
continue
text = res["text"]
if not text or not text.strip():
continue
if "zone" in res:
polygon = res["zone"]["polygon"]
elif "element" in res:
polygon = res["element"]["zone"]["polygon"]
else:
raise ValueError(f"Data problem with polygon :: {res}")
polygon = np.asarray(polygon).clip(0)
[x, y, w, h] = cv2.boundingRect(polygon)
if self.skip_vertical_lines:
if h > w:
count_skipped += 1
continue
lines.append(((x, y, w, h), polygon, text))
count += 1
return (lines, count, count_skipped)
except ErrorResponse as e:
logger.info(
f"ListTranscriptions failed {e.status_code} - {e.title} - {e.content} - {page_id}"
)
raise e
def _save_line_image(self, page_id, i, line_img, manifest_fp=None):
if self.module == "kraken":
cv2.imwrite(f"{self.out_line_dir}/{page_id}_{i}.png", line_img)
manifest_fp.write(f"{page_id}_{i}.png\n")
else:
cv2.imwrite(f"{self.out_line_img_dir}/{page_id}_{i}.jpg", line_img)
def extract_lines(self, page_id: str, image_data: dict):
if self.should_filter_by_class:
accepted_zones = self.get_accepted_zones(page_id)
else:
accepted_zones = []
lines, count, count_skipped = self.get_transcriptions(page_id, accepted_zones)
if count == 0:
self.skipped_pages_count += 1
logger.info(f"Page {page_id} skipped, because it has no lines")
return
logger.debug(f"Total num of lines {count + count_skipped}")
logger.debug(f"Num of accepted lines {count}")
logger.debug(f"Num of skipped lines {count_skipped}")
self.skipped_vertical_lines_count += count_skipped
self.accepted_lines_count += count
full_image_url = image_data["s3_url"]
if full_image_url is None:
full_image_url = image_data["url"] + "/full/full/0/default.jpg"
img = self.get_image(full_image_url, page_id=page_id)
# sort vertically then horizontally
sorted_lines = sorted(lines, key=lambda key: (key[0][1], key[0][0]))
if self.module == "kraken":
manifest_fp = open(f"{self.out_line_dir}/manifest.txt", "a")
# append to file, not re-write it
else:
# not needed for kaldi
manifest_fp = None
if self.extraction_mode == Extraction.boundingRect:
for i, ((x, y, w, h), polygon, text) in enumerate(sorted_lines):
cropped = img[y : y + h, x : x + w].copy()
self._save_line_image(page_id, i, cropped, manifest_fp)
elif self.extraction_mode == Extraction.polygon:
for i, (rect, polygon, text) in enumerate(sorted_lines):
polygon_img = extract_polygon_image(img, polygon=polygon, rect=rect)
self._save_line_image(page_id, i, polygon_img, manifest_fp)
elif self.extraction_mode == Extraction.min_area_rect:
for i, (rect, polygon, text) in enumerate(sorted_lines):
min_rect_img = extract_min_area_rect_image(
img, polygon=polygon, rect=rect
)
self._save_line_image(page_id, i, min_rect_img, manifest_fp)
elif self.extraction_mode == Extraction.deskew_polygon:
for i, (rect, polygon, text) in enumerate(sorted_lines):
# get angle from min area rect
rotate_angle = determine_rotate_angle(polygon)
if abs(rotate_angle) > self.max_deskew_angle:
logger.warning(
f"Deskew angle ({rotate_angle}) over the limit ({self.max_deskew_angle}), won't rotate"
)
rotate_angle = 0
# get polygon image
polygon_img = extract_polygon_image(img, polygon=polygon, rect=rect)
trimmed_img = self.rotate_and_trim(polygon_img, rotate_angle)
self._save_line_image(page_id, i, trimmed_img, manifest_fp)
elif self.extraction_mode == Extraction.deskew_min_area_rect:
for i, (rect, polygon, text) in enumerate(sorted_lines):
# get angle from min area rect
rotate_angle = determine_rotate_angle(polygon)
if abs(rotate_angle) > self.max_deskew_angle:
logger.warning(
f"Deskew angle ({rotate_angle}) over the limit ({self.max_deskew_angle}), won't rotate"
)
rotate_angle = 0
min_rect_img = extract_min_area_rect_image(
img, polygon=polygon, rect=rect
)
trimmed_img = self.rotate_and_trim(min_rect_img, rotate_angle)
self._save_line_image(page_id, i, trimmed_img, manifest_fp)
else:
raise ValueError(f"Unsupported extraction mode: {self.extraction_mode}")
if self.module == "kraken":
manifest_fp.close()
for i, (rect, polygon, text) in enumerate(sorted_lines):
if self.module == "kraken":
write_file(f"{self.out_line_dir}/{page_id}_{i}.gt.txt", text)
else:
write_file(f"{self.out_line_text_dir}/{page_id}_{i}.txt", text)
def rotate_and_trim(self, img, rotate_angle):
"""
Rotate image by given an angle and trim extra whitespace left after rotating
"""
if self.grayscale:
background = WHITE
else:
background = (WHITE, WHITE, WHITE)
# rotate polygon image
deskewed_img = rotate(img, rotate_angle, background)
# trim extra whitespace left after rotating
trimmed_img = trim(deskewed_img, background)
trimmed_img = np.array(trimmed_img)
return trimmed_img
def run_pages(self, pages: list):
if all(isinstance(n, str) for n in pages):
for page in pages:
elt = api_client.request("RetrieveElement", id=page)
page_id = elt["id"]
image_data = elt["zone"]["image"]
logger.debug(f"Page {page_id}")
self.extract_lines(page_id, image_data)
else:
for page in tqdm.tqdm(pages):
page_id = page["id"]
image_data = page["zone"]["image"]
logger.debug(f"Page {page_id}")
self.extract_lines(page_id, image_data)
def run_volumes(self, volume_ids: list):
for volume_id in tqdm.tqdm(volume_ids):
logger.info(f"Volume {volume_id}")
pages = [
page
for page in api_client.paginate(
"ListElementChildren", id=volume_id, recursive=True, type="page"
)
]
self.run_pages(pages)
def run_folders(self, element_ids: list, volume_type: str):
for elem_id in tqdm.tqdm(element_ids):
logger.info(f"Folder {elem_id}")
vol_ids = [
page["id"]
for page in api_client.paginate(
"ListElementChildren", id=elem_id, recursive=True, type=volume_type
)
]
self.run_volumes(vol_ids)
def run_corpora(self, corpus_ids: list, volume_type: str):
for corpus_id in tqdm.tqdm(corpus_ids):
logger.info(f"Corpus {corpus_id}")
vol_ids = [
vol["id"]
for vol in api_client.paginate(
"ListElements", corpus=corpus_id, type=volume_type
)
]
self.run_volumes(vol_ids)
class Split(Enum):
Train: int = 0
Test: int = 1
Validation: int = 2
@property
def short_name(self) -> str:
if self == self.Validation:
return "val"
return self.name.lower()
class KaldiPartitionSplitter:
def __init__(
self,
out_dir_base="/tmp/kaldi_data",
split_train_ratio=0.8,
split_test_ratio=0.1,
use_existing_split=False,
):
self.out_dir_base = out_dir_base
self.split_train_ratio = split_train_ratio
self.split_test_ratio = split_test_ratio
self.split_val_ratio = 1 - self.split_train_ratio - self.split_test_ratio
self.use_existing_split = use_existing_split
def page_level_split(self, line_ids: list) -> dict:
# need to sort again, because `set` will lose the order
page_ids = sorted({"_".join(line_id.split("_")[:-1]) for line_id in line_ids})
random.Random(SEED).shuffle(page_ids)
page_count = len(page_ids)
train_page_ids = page_ids[: round(page_count * self.split_train_ratio)]
page_ids = page_ids[round(page_count * self.split_train_ratio) :]
test_page_ids = page_ids[: round(page_count * self.split_test_ratio)]
page_ids = page_ids[round(page_count * self.split_test_ratio) :]
val_page_ids = page_ids
page_dict = {page_id: Split.Train.value for page_id in train_page_ids}
page_dict.update({page_id: Split.Test.value for page_id in test_page_ids})
page_dict.update({page_id: Split.Validation.value for page_id in val_page_ids})
return page_dict
def existing_split(self, line_ids: list) -> list:
split_dict = {split.short_name: [] for split in Split}
for line_id in line_ids:
split_prefix = line_id.split("/")[0].lower()
split_dict[split_prefix].append(line_id)
splits = [split_dict[split.short_name] for split in Split]
return splits
def create_partitions(self):
logger.info("Creating partitions")
lines_path = Path(f"{self.out_dir_base}/Lines")
line_ids = [
str(file.relative_to(lines_path).with_suffix(""))
for file in sorted(lines_path.glob("**/*.jpg"))
]
if self.use_existing_split:
logger.info("Using existing split")
datasets = self.existing_split(line_ids)
else:
page_dict = self.page_level_split(line_ids)
datasets = [[] for _ in range(3)]
for line_id in line_ids:
page_id = "_".join(line_id.split("_")[:-1])
split_id = page_dict[page_id]
datasets[split_id].append(line_id)
partitions_dir = os.path.join(self.out_dir_base, "Partitions")
os.makedirs(partitions_dir, exist_ok=True)
for i, dataset in enumerate(datasets):
if not dataset:
logger.info(f"Partition {Split(i).name} is empty! Skipping..")
continue
file_name = f"{partitions_dir}/{Split(i).name}Lines.lst"
write_file(file_name, "\n".join(dataset) + "\n")
def create_parser():
parser = argparse.ArgumentParser(
description="Script to generate Kaldi or kraken training data from annotations from Arkindex",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"-f",
"--format",
type=str,
help="is the data generated going to be used for kaldi or kraken",
)
parser.add_argument(
"-n",
"--dataset_name",
type=str,
help="Name of the dataset being created for kaldi or kraken "
"(useful for distinguishing different datasets when in Lines or Transcriptions directory)",
)
parser.add_argument(
"-o", "--out_dir", type=str, required=True, help="output directory"
)
parser.add_argument(
"--train_ratio",
type=float,
default=0.8,
help="Ratio of pages to be used in train (between 0 and 1)",
)
parser.add_argument(
"--test_ratio",
type=float,
default=0.1,
help="Ratio of pages to be used in test (between 0 and 1 - train_ratio)",
)
parser.add_argument(
"--use_existing_split",
action="store_true",
default=False,
help="Use an existing split instead of random. "
"Expecting line_ids to be prefixed with (train, val and test)",
)
parser.add_argument(
"--split_only",
"--no_download",
action="store_true",
default=False,
help="Create the split from already downloaded lines, don't download the lines",
)
parser.add_argument(
"--no_split",
action="store_true",
default=False,
help="No splitting of the data to be done just download the line in the right format",
)
parser.add_argument(
"-e",
"--extraction_mode",
type=lambda x: Extraction[x],
default=Extraction.boundingRect,
help=f"Mode for extracting the line images: {[e.name for e in Extraction]}",
)
parser.add_argument(
"--max_deskew_angle",
type=int,
default=45,
help="Maximum angle by which deskewing is allowed to rotate the line image. "
"If the angle determined by deskew tool is bigger than max "
"then that line won't be deskewed/rotated.",
)
parser.add_argument(
"--transcription_type",
type=str,
default="text_line",
help="Which type of elements' transcriptions to use? (page, paragraph, text_line, etc)",
)
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument(
"--grayscale", action="store_true", help="Convert images to grayscale"
)
group.add_argument("--color", action="store_false", help="Use color images")
parser.set_defaults(grayscale=True)
parser.add_argument(
"--corpora",
nargs="*",
help="List of corpus ids to be used, separated by spaces",
)
parser.add_argument(
"--folders",
type=str,
nargs="*",
help="List of folder ids to be used, separated by spaces. "
"Elements of `volume_type` will be searched recursively in these folders",
)
parser.add_argument(
"--volumes",
nargs="*",
help="List of volume ids to be used, separated by spaces",
)
parser.add_argument(
"--pages", nargs="*", help="List of page ids to be used, separated by spaces"
)
parser.add_argument(
"-v",
"--volume_type",
type=str,
default="volume",
help="Volumes (1 level above page) may have a different name on corpora",
)
parser.add_argument(
"--skip_vertical_lines",
action="store_true",
default=False,
help="skips vertical lines when downloading",
)
parser.add_argument(
"--accepted_slugs",
nargs="*",
help="List of accepted slugs for downloading transcriptions",
)
parser.add_argument(
"--accepted_classes",
nargs="*",
help="List of accepted ml_class names. Filter lines by class of related elements",
)
parser.add_argument(
"--accepted_worker_version_ids",
nargs="*",
default=[],
help="List of accepted worker version ids. Filter lines by worker version ids of related elements"
"Use `--accepted_worker_version_ids manual` to get only manual transcriptions",
)
parser.add_argument(
"--filter_printed",
action="store_true",
help="Filter lines annotated as printed",
)
return parser
def main():
parser = create_parser()
args = parser.parse_args()
if not args.dataset_name and not args.split_only and not args.format == "kraken":
parser.error("--dataset_name must be specified (unless --split-only)")
logger.info(f"ARGS {args} \n")
if not args.split_only:
data_generator = HTRDataGenerator(
module=args.format,
dataset_name=args.dataset_name,
out_dir_base=args.out_dir,
grayscale=args.grayscale,
extraction=args.extraction_mode,
accepted_slugs=args.accepted_slugs,
accepted_classes=args.accepted_classes,
filter_printed=args.filter_printed,
skip_vertical_lines=args.skip_vertical_lines,
transcription_type=args.transcription_type,
accepted_worker_version_ids=args.accepted_worker_version_ids,
max_deskew_angle=args.max_deskew_angle,
)
# extract all the lines and transcriptions
if args.pages:
data_generator.run_pages(args.pages)
if args.volumes:
data_generator.run_volumes(args.volumes)
if args.folders:
data_generator.run_folders(args.folders, args.volume_type)
if args.corpora:
data_generator.run_corpora(args.corpora, args.volume_type)
if data_generator.skipped_vertical_lines_count > 0:
logger.info(
f"Number of skipped pages: {data_generator.skipped_pages_count}"
)
skipped_ratio = data_generator.skipped_vertical_lines_count / (
data_generator.skipped_vertical_lines_count
+ data_generator.accepted_lines_count
)
logger.info(
f"Skipped {data_generator.skipped_vertical_lines_count} vertical lines ({skipped_ratio}/1.0)"
)
else:
logger.info("Creating a split from already downloaded files")
if not args.no_split:
kaldi_partitioner = KaldiPartitionSplitter(
out_dir_base=args.out_dir,
split_train_ratio=args.train_ratio,
split_test_ratio=args.test_ratio,
use_existing_split=args.use_existing_split,
)
# create partitions from all the extracted data
kaldi_partitioner.create_partitions()
else:
logger.info("No split to be done")
logger.info("DONE")
if __name__ == "__main__":
main()