Newer
Older
from apistar.exceptions import ErrorResponse
from arkindex import ArkindexClient, options_from_env
def download_image(url):
'''
Download an image and open it with Pillow
'''
assert url.startswith('http'), 'Image URL must be HTTP(S)'
# Download the image
# Cannot use stream=True as urllib's responses do not support the seek(int) method,
# which is explicitly required by Image.open on file-like objects
resp = requests.get(url)
resp.raise_for_status()
# Preprocess the image and prepare it for classification
image = Image.open(BytesIO(resp.content))
print('Downloaded image {} - size={}x{}'.format(url,
def write_file(file_name, content):
with open(file_name, 'w') as f:
f.write(content)
def __init__(self, dataset_name='foo', out_dir_base='/tmp/kaldi_data', grayscale=True):
self.out_dir_base = out_dir_base
self.dataset_name = dataset_name
self.grayscale = grayscale
self.out_line_text_dir = os.path.join(self.out_dir_base, 'Transcriptions', self.dataset_name)
os.makedirs(self.out_line_text_dir, exist_ok=True)
self.out_line_img_dir = os.path.join(self.out_dir_base, 'Lines', self.dataset_name)
os.makedirs(self.out_line_img_dir, exist_ok=True)
def get_image(self, image_url, page_id):
out_full_img_dir = os.path.join(self.out_dir_base, 'full', page_id)
os.makedirs(out_full_img_dir, exist_ok=True)
out_full_img_path = os.path.join(out_full_img_dir, 'full.jpg')
if self.grayscale:
download_image(image_url).convert('L').save(
out_full_img_path, format='jpeg')
img = cv2.imread(out_full_img_path, cv2.IMREAD_GRAYSCALE)
else:
download_image(image_url).save(
out_full_img_path, format='jpeg')
img = cv2.imread(out_full_img_path)
return img
def extract_lines(self, page_id):
count = 0
line_bounding_rects = []
line_polygons = []
line_transcriptions = []
try:
for res in api_client.paginate('ListTranscriptions', id=page_id, type='line'):
text = res['text']
if not text or not text.strip():
continue
line_transcriptions.append(text)
polygon = res['zone']['polygon']
line_polygons.append(polygon)
[x, y, w, h] = cv2.boundingRect(np.asarray(polygon))
line_bounding_rects.append([x, y, w, h])
count += 1
except ErrorResponse as e:
print("ListTranscriptions failed", e.status_code, e.title, e.content, page_id)
raise e
full_image_url = res['zone']['image']['s3_url']
img = self.get_image(full_image_url, page_id=page_id)
for i, [x, y, w, h] in enumerate(line_bounding_rects):
cropped = img[y:y + h, x:x + w].copy()
cv2.imwrite(f'{self.out_line_img_dir}/{page_id}_{i}.jpg', cropped)
write_file(f"{self.out_line_text_dir}/{page_id}_{i}.txt", text)
def run_pages(self, page_ids):
for page_id in page_ids:
print("Page", page_id)
self.extract_lines(page_id)
def run_volumes(self, volume_ids):
for volume_id in volume_ids:
print("Vol", volume_id)
page_ids = [page['id'] for page in api_client.paginate('ListElementChildren', id=volume_id)]
self.run_pages(page_ids)
class Split(Enum):
Train: int = 0
Test: int = 1
Validation: int = 2
class KaldiPartitionSplitter:
def __init__(self, out_dir_base='/tmp/kaldi_data', split_train_ratio=0.8, split_test_ratio=0.1):
self.out_dir_base = out_dir_base
self.split_train_ratio = split_train_ratio
self.split_test_ratio = split_test_ratio
self.split_val_ratio = 1 - self.split_train_ratio - self.split_test_ratio
def page_level_split(self, line_ids):
page_ids = list({'_'.join(line_id.split('_')[:-1]) for line_id in line_ids})
random.shuffle(page_ids)
page_count = len(page_ids)
train_page_ids = page_ids[:round(page_count * self.split_train_ratio)]
page_ids = page_ids[round(page_count * self.split_train_ratio):]
test_page_ids = page_ids[:round(page_count * self.split_test_ratio)]
page_ids = page_ids[round(page_count * self.split_test_ratio):]
val_page_ids = page_ids
page_dict = {page_id: Split.Train.value for page_id in train_page_ids}
page_dict.update({page_id: Split.Test.value for page_id in test_page_ids})
page_dict.update({page_id: Split.Validation.value for page_id in val_page_ids})
lines_path = Path(f'{self.out_dir_base}/Lines')
line_ids = [str(file.relative_to(lines_path).with_suffix('')) for file in lines_path.glob('**/*.jpg')]
page_dict = self.page_level_split(line_ids)
datasets = [[] for _ in range(3)]
for line_id in line_ids:
page_id = '_'.join(line_id.split('_')[:-1])
split_id = page_dict[page_id]
datasets[split_id].append(line_id)
partitions_dir = os.path.join(self.out_dir_base, 'Partitions')
os.makedirs(partitions_dir, exist_ok=True)
for i, dataset in enumerate(datasets):
if not dataset:
print(f"Partition {Split(i).name} is empty! Skipping..")
continue
def create_parser():
parser = argparse.ArgumentParser(
description="Script to generate Kaldi training data from annotations from Arkindex")
parser.add_argument('-n', '--dataset_name', type=str, required=True,
help='Name of the dataset being created for kaldi '
'(useful for distinguishing different datasets when in Lines or Transcriptions directory)')
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
parser.add_argument('-o', '--out_dir', type=str, required=True,
help='output directory')
parser.add_argument('--train_ratio', type=float, default=0.8,
help='Ratio of pages to be used in train (between 0 and 1)')
parser.add_argument('--test_ratio', type=float, default=0.1,
help='Ratio of pages to be used in train (between 0 and 1 - train_ratio)')
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument('--grayscale', action='store_true',
help='Convert images to grayscale')
group.add_argument('--color', action='store_false',
help='Use color images')
parser.set_defaults(grayscale=True)
parser.add_argument('--volumes', nargs='*',
help='List of volume ids to be used, separated by spaces')
parser.add_argument('--pages', nargs='*',
help='List of page ids to be used, separated by spaces')
return parser
def main():
args = create_parser().parse_args()
print("ARGS", args, '\n')
kaldi_data_generator = KaldiDataGenerator(dataset_name=args.dataset_name,
out_dir_base=args.out_dir,
grayscale=args.grayscale)
kaldi_partitioner = KaldiPartitionSplitter(out_dir_base=args.out_dir,
split_train_ratio=args.train_ratio,
split_test_ratio=args.test_ratio)
# extract all the lines and transcriptions
if args.pages:
if args.volumes:
kaldi_data_generator.run_volumes(args.volumes)
print()
# create partitions from all the extracted data
kaldi_partitioner.create_partitions()