Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
B
Base Worker
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Workers
Base Worker
Commits
10527c74
Commit
10527c74
authored
2 years ago
by
Yoann Schneider
Browse files
Options
Downloads
Patches
Plain Diff
add test for retrieve ml class
parent
6399ac95
No related branches found
No related tags found
1 merge request
!278
Use MLClass when using the CreateClassifications helper
Pipeline
#79929
passed
2 years ago
Stage: test
Stage: build
Stage: release
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
arkindex_worker/worker/classification.py
+31
-7
31 additions, 7 deletions
arkindex_worker/worker/classification.py
tests/test_elements_worker/test_classifications.py
+181
-31
181 additions, 31 deletions
tests/test_elements_worker/test_classifications.py
with
212 additions
and
38 deletions
arkindex_worker/worker/classification.py
+
31
−
7
View file @
10527c74
...
...
@@ -64,6 +64,30 @@ class ClassificationMixin(object):
return
ml_class_id
def
retrieve_ml_class
(
self
,
ml_class_id
:
str
)
->
str
:
"""
Retrieve the name of the MLClass from its ID.
:param ml_class_id: ID of the searched MLClass.
:return: The MLClass
'
s name
"""
# Load the corpus' MLclasses if they are not available yet
if
self
.
corpus_id
not
in
self
.
classes
:
self
.
load_corpus_classes
()
# Filter classes by this ml_class_id
ml_class_name
=
next
(
filter
(
lambda
x
:
self
.
classes
[
self
.
corpus_id
][
x
]
==
ml_class_id
,
self
.
classes
[
self
.
corpus_id
],
),
None
,
)
assert
(
ml_class_name
is
not
None
),
f
"
Missing class with id (
{
ml_class_id
}
) in corpus (
{
self
.
corpus_id
}
)
"
return
ml_class_name
def
create_classification
(
self
,
element
:
Union
[
Element
,
CachedElement
],
...
...
@@ -97,7 +121,6 @@ class ClassificationMixin(object):
"
Cannot create classification as this worker is in read-only mode
"
)
return
try
:
created
=
self
.
request
(
"
CreateClassification
"
,
...
...
@@ -166,7 +189,7 @@ class ClassificationMixin(object):
:param element: The element to create classifications on.
:param classifications: The classifications to create, a list of dicts. Each of them contains
a **class_
name
** (str), the
name
of the MLClass for this classification;
a **
ml_
class_
id
** (str), the
ID
of the MLClass for this classification;
a **confidence** (float), the confidence score, between 0 and 1;
a **high_confidence** (bool), the high confidence state of the classification.
...
...
@@ -181,10 +204,10 @@ class ClassificationMixin(object):
),
"
classifications shouldn
'
t be null and should be of type list
"
for
index
,
classification
in
enumerate
(
classifications
):
class_
name
=
classification
.
get
(
"
class_
name
"
)
assert
class_
name
and
isinstance
(
class_
name
,
str
),
f
"
Classification at index
{
index
}
in classifications: class_
name
shouldn
'
t be null and should be of type str
"
ml_
class_
id
=
classification
.
get
(
"
ml_
class_
id
"
)
assert
ml_
class_
id
and
isinstance
(
ml_
class_
id
,
str
),
f
"
Classification at index
{
index
}
in classifications:
ml_
class_
id
shouldn
'
t be null and should be of type str
"
confidence
=
classification
.
get
(
"
confidence
"
)
assert
(
...
...
@@ -215,6 +238,7 @@ class ClassificationMixin(object):
)[
"
classifications
"
]
for
created_cl
in
created_cls
:
created_cl
[
"
class_name
"
]
=
self
.
retrieve_ml_class
(
created_cl
[
"
ml_class
"
])
self
.
report
.
add_classification
(
element
.
id
,
created_cl
[
"
class_name
"
])
if
self
.
use_cache
:
...
...
@@ -224,7 +248,7 @@ class ClassificationMixin(object):
{
"
id
"
:
created_cl
[
"
id
"
],
"
element_id
"
:
element
.
id
,
"
class_name
"
:
created_cl
[
"
class_name
"
]
,
"
class_name
"
:
created_cl
.
pop
(
"
class_name
"
)
,
"
confidence
"
:
created_cl
[
"
confidence
"
],
"
state
"
:
created_cl
[
"
state
"
],
"
worker_run_id
"
:
self
.
worker_run_id
,
...
...
This diff is collapsed.
Click to expand it.
tests/test_elements_worker/test_classifications.py
+
181
−
31
View file @
10527c74
...
...
@@ -162,6 +162,46 @@ def test_get_ml_class_reload(responses, mock_elements_worker):
]
def
test_retrieve_ml_class_in_cache
(
mock_elements_worker
):
"""
Look for a class that exists in cache -> No API Call
"""
mock_elements_worker
.
classes
[
mock_elements_worker
.
corpus_id
]
=
{
"
class1
"
:
"
uuid1
"
}
assert
mock_elements_worker
.
retrieve_ml_class
(
"
uuid1
"
)
==
"
class1
"
def
test_retrieve_ml_class_not_in_cache
(
responses
,
mock_elements_worker
):
"""
Retrieve class not in cache -> Retrieve corpus ml classes via API
"""
responses
.
add
(
responses
.
GET
,
f
"
http://testserver/api/v1/corpus/
{
mock_elements_worker
.
corpus_id
}
/classes/
"
,
status
=
200
,
json
=
{
"
count
"
:
1
,
"
next
"
:
None
,
"
results
"
:
[
{
"
id
"
:
"
uuid1
"
,
"
name
"
:
"
class1
"
,
},
],
},
)
assert
mock_elements_worker
.
retrieve_ml_class
(
"
uuid1
"
)
==
"
class1
"
assert
len
(
responses
.
calls
)
==
len
(
BASE_API_CALLS
)
+
1
assert
[
(
call
.
request
.
method
,
call
.
request
.
url
)
for
call
in
responses
.
calls
]
==
BASE_API_CALLS
+
[
(
"
GET
"
,
f
"
http://testserver/api/v1/corpus/
{
mock_elements_worker
.
corpus_id
}
/classes/
"
,
),
]
def
test_create_classification_wrong_element
(
mock_elements_worker
):
with
pytest
.
raises
(
AssertionError
)
as
e
:
mock_elements_worker
.
create_classification
(
...
...
@@ -520,12 +560,12 @@ def test_create_classifications_wrong_element(mock_elements_worker):
element
=
None
,
classifications
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
"
landscape
"
,
"
ml_
class_
id
"
:
"
uuid2
"
,
"
confidence
"
:
0.25
,
"
high_confidence
"
:
False
,
},
...
...
@@ -541,12 +581,12 @@ def test_create_classifications_wrong_element(mock_elements_worker):
element
=
"
not element type
"
,
classifications
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
"
landscape
"
,
"
ml_
class_
id
"
:
"
uuid2
"
,
"
confidence
"
:
0.25
,
"
high_confidence
"
:
False
,
},
...
...
@@ -584,19 +624,19 @@ def test_create_classifications_wrong_classifications(mock_elements_worker):
element
=
elt
,
classifications
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
confidence
"
:
0.25
,
"
ml_class_id
"
:
0.25
,
"
high_confidence
"
:
False
,
},
],
)
assert
(
str
(
e
.
value
)
==
"
Classification at index 1 in classifications: class_
name
shouldn
'
t be null and should be of type str
"
==
"
Classification at index 1 in classifications:
ml_
class_
id
shouldn
'
t be null and should be of type str
"
)
with
pytest
.
raises
(
AssertionError
)
as
e
:
...
...
@@ -604,12 +644,12 @@ def test_create_classifications_wrong_classifications(mock_elements_worker):
element
=
elt
,
classifications
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
None
,
"
ml_
class_
id
"
:
None
,
"
confidence
"
:
0.25
,
"
high_confidence
"
:
False
,
},
...
...
@@ -617,7 +657,7 @@ def test_create_classifications_wrong_classifications(mock_elements_worker):
)
assert
(
str
(
e
.
value
)
==
"
Classification at index 1 in classifications: class_
name
shouldn
'
t be null and should be of type str
"
==
"
Classification at index 1 in classifications:
ml_
class_
id
shouldn
'
t be null and should be of type str
"
)
with
pytest
.
raises
(
AssertionError
)
as
e
:
...
...
@@ -625,12 +665,12 @@ def test_create_classifications_wrong_classifications(mock_elements_worker):
element
=
elt
,
classifications
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
1234
,
"
ml_
class_
id
"
:
1234
,
"
confidence
"
:
0.25
,
"
high_confidence
"
:
False
,
},
...
...
@@ -638,7 +678,7 @@ def test_create_classifications_wrong_classifications(mock_elements_worker):
)
assert
(
str
(
e
.
value
)
==
"
Classification at index 1 in classifications: class_
name
shouldn
'
t be null and should be of type str
"
==
"
Classification at index 1 in classifications:
ml_
class_
id
shouldn
'
t be null and should be of type str
"
)
with
pytest
.
raises
(
AssertionError
)
as
e
:
...
...
@@ -646,12 +686,12 @@ def test_create_classifications_wrong_classifications(mock_elements_worker):
element
=
elt
,
classifications
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
"
landscape
"
,
"
ml_
class_
id
"
:
"
uuid2
"
,
"
high_confidence
"
:
False
,
},
],
...
...
@@ -666,12 +706,12 @@ def test_create_classifications_wrong_classifications(mock_elements_worker):
element
=
elt
,
classifications
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
"
landscape
"
,
"
ml_
class_
id
"
:
"
uuid2
"
,
"
confidence
"
:
None
,
"
high_confidence
"
:
False
,
},
...
...
@@ -687,12 +727,12 @@ def test_create_classifications_wrong_classifications(mock_elements_worker):
element
=
elt
,
classifications
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
"
landscape
"
,
"
ml_
class_
id
"
:
"
uuid2
"
,
"
confidence
"
:
"
wrong confidence
"
,
"
high_confidence
"
:
False
,
},
...
...
@@ -708,12 +748,12 @@ def test_create_classifications_wrong_classifications(mock_elements_worker):
element
=
elt
,
classifications
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
"
landscape
"
,
"
ml_
class_
id
"
:
"
uuid2
"
,
"
confidence
"
:
0
,
"
high_confidence
"
:
False
,
},
...
...
@@ -729,12 +769,12 @@ def test_create_classifications_wrong_classifications(mock_elements_worker):
element
=
elt
,
classifications
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
"
landscape
"
,
"
ml_
class_
id
"
:
"
uuid2
"
,
"
confidence
"
:
2.00
,
"
high_confidence
"
:
False
,
},
...
...
@@ -750,12 +790,12 @@ def test_create_classifications_wrong_classifications(mock_elements_worker):
element
=
elt
,
classifications
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
"
landscape
"
,
"
ml_
class_
id
"
:
"
uuid2
"
,
"
confidence
"
:
0.25
,
"
high_confidence
"
:
"
wrong high_confidence
"
,
},
...
...
@@ -776,12 +816,12 @@ def test_create_classifications_api_error(responses, mock_elements_worker):
elt
=
Element
({
"
id
"
:
"
12341234-1234-1234-1234-123412341234
"
})
classes
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
"
landscape
"
,
"
ml_
class_
id
"
:
"
uuid2
"
,
"
confidence
"
:
0.25
,
"
high_confidence
"
:
False
,
},
...
...
@@ -806,15 +846,20 @@ def test_create_classifications_api_error(responses, mock_elements_worker):
def
test_create_classifications
(
responses
,
mock_elements_worker_with_cache
):
# Set MLClass in cache
mock_elements_worker_with_cache
.
classes
[
mock_elements_worker_with_cache
.
corpus_id
]
=
{
"
portrait
"
:
"
uuid1
"
,
"
landscape
"
:
"
uuid2
"
}
elt
=
CachedElement
.
create
(
id
=
"
12341234-1234-1234-1234-123412341234
"
,
type
=
"
thing
"
)
classes
=
[
{
"
class_
name
"
:
"
portrait
"
,
"
ml_
class_
id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
class_
name
"
:
"
landscape
"
,
"
ml_
class_
id
"
:
"
uuid2
"
,
"
confidence
"
:
0.25
,
"
high_confidence
"
:
False
,
},
...
...
@@ -830,14 +875,14 @@ def test_create_classifications(responses, mock_elements_worker_with_cache):
"
classifications
"
:
[
{
"
id
"
:
"
00000000-0000-0000-0000-000000000000
"
,
"
class
_name
"
:
"
portrait
"
,
"
ml_
class
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
"
state
"
:
"
pending
"
,
},
{
"
id
"
:
"
11111111-1111-1111-1111-111111111111
"
,
"
class
_name
"
:
"
landscape
"
,
"
ml_
class
"
:
"
uuid2
"
,
"
confidence
"
:
0.25
,
"
high_confidence
"
:
False
,
"
state
"
:
"
pending
"
,
...
...
@@ -882,3 +927,108 @@ def test_create_classifications(responses, mock_elements_worker_with_cache):
worker_run_id
=
UUID
(
"
56785678-5678-5678-5678-567856785678
"
),
),
]
def
test_create_classifications_not_in_cache
(
responses
,
mock_elements_worker_with_cache
):
"""
CreateClassifications using ID that are not in `.classes` attribute.
Will load corpus MLClass to insert the corresponding name in Cache.
"""
elt
=
CachedElement
.
create
(
id
=
"
12341234-1234-1234-1234-123412341234
"
,
type
=
"
thing
"
)
classes
=
[
{
"
ml_class_id
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
},
{
"
ml_class_id
"
:
"
uuid2
"
,
"
confidence
"
:
0.25
,
"
high_confidence
"
:
False
,
},
]
responses
.
add
(
responses
.
POST
,
"
http://testserver/api/v1/classification/bulk/
"
,
status
=
200
,
json
=
{
"
parent
"
:
str
(
elt
.
id
),
"
worker_run_id
"
:
"
56785678-5678-5678-5678-567856785678
"
,
"
classifications
"
:
[
{
"
id
"
:
"
00000000-0000-0000-0000-000000000000
"
,
"
ml_class
"
:
"
uuid1
"
,
"
confidence
"
:
0.75
,
"
high_confidence
"
:
False
,
"
state
"
:
"
pending
"
,
},
{
"
id
"
:
"
11111111-1111-1111-1111-111111111111
"
,
"
ml_class
"
:
"
uuid2
"
,
"
confidence
"
:
0.25
,
"
high_confidence
"
:
False
,
"
state
"
:
"
pending
"
,
},
],
},
)
responses
.
add
(
responses
.
GET
,
f
"
http://testserver/api/v1/corpus/
{
mock_elements_worker_with_cache
.
corpus_id
}
/classes/
"
,
status
=
200
,
json
=
{
"
count
"
:
2
,
"
next
"
:
None
,
"
results
"
:
[
{
"
id
"
:
"
uuid1
"
,
"
name
"
:
"
portrait
"
,
},
{
"
id
"
:
"
uuid2
"
,
"
name
"
:
"
landscape
"
},
],
},
)
mock_elements_worker_with_cache
.
create_classifications
(
element
=
elt
,
classifications
=
classes
)
assert
len
(
responses
.
calls
)
==
len
(
BASE_API_CALLS
)
+
2
assert
[
(
call
.
request
.
method
,
call
.
request
.
url
)
for
call
in
responses
.
calls
]
==
BASE_API_CALLS
+
[
(
"
POST
"
,
"
http://testserver/api/v1/classification/bulk/
"
),
(
"
GET
"
,
f
"
http://testserver/api/v1/corpus/
{
mock_elements_worker_with_cache
.
corpus_id
}
/classes/
"
,
),
]
assert
json
.
loads
(
responses
.
calls
[
-
2
].
request
.
body
)
==
{
"
parent
"
:
str
(
elt
.
id
),
"
worker_run_id
"
:
"
56785678-5678-5678-5678-567856785678
"
,
"
classifications
"
:
classes
,
}
# Check that created classifications were properly stored in SQLite cache
assert
list
(
CachedClassification
.
select
())
==
[
CachedClassification
(
id
=
UUID
(
"
00000000-0000-0000-0000-000000000000
"
),
element_id
=
UUID
(
elt
.
id
),
class_name
=
"
portrait
"
,
confidence
=
0.75
,
state
=
"
pending
"
,
worker_run_id
=
UUID
(
"
56785678-5678-5678-5678-567856785678
"
),
),
CachedClassification
(
id
=
UUID
(
"
11111111-1111-1111-1111-111111111111
"
),
element_id
=
UUID
(
elt
.
id
),
class_name
=
"
landscape
"
,
confidence
=
0.25
,
state
=
"
pending
"
,
worker_run_id
=
UUID
(
"
56785678-5678-5678-5678-567856785678
"
),
),
]
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment