Skip to content
Snippets Groups Projects
kaldi_data_generator.py 10 KiB
Newer Older
Martin's avatar
Martin committed
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
Martin's avatar
Martin committed
import argparse
Martin's avatar
Martin committed
import os
Martin's avatar
Martin committed
import random
Martin's avatar
Martin committed
from enum import Enum
Martin's avatar
Martin committed
from io import BytesIO
Martin's avatar
Martin committed
from pathlib import Path
Martin's avatar
Martin committed

import cv2
import numpy as np
Martin's avatar
Martin committed
import requests
from PIL import Image
Martin's avatar
Martin committed
from apistar.exceptions import ErrorResponse
from arkindex import ArkindexClient, options_from_env
Martin's avatar
Martin committed

Martin's avatar
Martin committed
api_client = ArkindexClient(**options_from_env())

Martin's avatar
Martin committed

Martin's avatar
Martin committed
def download_image(url):
    '''
    Download an image and open it with Pillow
    '''
    assert url.startswith('http'), 'Image URL must be HTTP(S)'
    # Download the image
    # Cannot use stream=True as urllib's responses do not support the seek(int) method,
    # which is explicitly required by Image.open on file-like objects
    resp = requests.get(url)
    resp.raise_for_status()

    # Preprocess the image and prepare it for classification
    image = Image.open(BytesIO(resp.content))
    print('Downloaded image {} - size={}x{}'.format(url,
Martin's avatar
Martin committed
                                                    image.size[0],
                                                    image.size[1]))
Martin's avatar
Martin committed

    return image

Martin's avatar
Martin committed

Martin's avatar
Martin committed
def write_file(file_name, content):
    with open(file_name, 'w') as f:
        f.write(content)

Martin's avatar
Martin committed

class Extraction(Enum):
    boundingRect: int = 0
    polygon: int = 1


Martin's avatar
Martin committed
class KaldiDataGenerator:

    def __init__(self, dataset_name='foo', out_dir_base='/tmp/kaldi_data', grayscale=True,
                 extraction=Extraction.boundingRect):
Martin's avatar
Martin committed
        self.out_dir_base = out_dir_base
        self.dataset_name = dataset_name
        self.grayscale = grayscale
        self.extraction_mode = extraction
Martin's avatar
Martin committed

        self.out_line_text_dir = os.path.join(self.out_dir_base, 'Transcriptions', self.dataset_name)
        os.makedirs(self.out_line_text_dir, exist_ok=True)
        self.out_line_img_dir = os.path.join(self.out_dir_base, 'Lines', self.dataset_name)
        os.makedirs(self.out_line_img_dir, exist_ok=True)

Martin's avatar
Martin committed
    def get_image(self, image_url: str, page_id: str) -> 'np.ndarray':
Martin's avatar
Martin committed
        out_full_img_dir = os.path.join(self.out_dir_base, 'full', page_id)
        os.makedirs(out_full_img_dir, exist_ok=True)
        out_full_img_path = os.path.join(out_full_img_dir, 'full.jpg')
        if self.grayscale:
            download_image(image_url).convert('L').save(
                out_full_img_path, format='jpeg')
            img = cv2.imread(out_full_img_path, cv2.IMREAD_GRAYSCALE)
        else:
            download_image(image_url).save(
                out_full_img_path, format='jpeg')
            img = cv2.imread(out_full_img_path)
        return img

Martin's avatar
Martin committed
    def extract_lines(self, page_id: str):
Martin's avatar
Martin committed
        count = 0
        line_bounding_rects = []
        line_polygons = []
        line_transcriptions = []
        try:
            for res in api_client.paginate('ListTranscriptions', id=page_id, type='line'):
                text = res['text']
                if not text or not text.strip():
                    continue
                line_transcriptions.append(text)
Martin's avatar
Martin committed
                polygon = np.asarray(res['zone']['polygon']).clip(0)
Martin's avatar
Martin committed
                line_polygons.append(polygon)
Martin's avatar
Martin committed
                [x, y, w, h] = cv2.boundingRect(polygon)
Martin's avatar
Martin committed
                line_bounding_rects.append([x, y, w, h])
                count += 1
        except ErrorResponse as e:
            print("ListTranscriptions failed", e.status_code, e.title, e.content, page_id)
            raise e
        print("Num of lines", count)
Martin's avatar
Martin committed
        full_image_url = res['zone']['image']['s3_url']

        img = self.get_image(full_image_url, page_id=page_id)

        if self.extraction_mode == Extraction.boundingRect:
            for i, [x, y, w, h] in enumerate(line_bounding_rects):
                cropped = img[y:y + h, x:x + w].copy()
                cv2.imwrite(f'{self.out_line_img_dir}/{page_id}_{i}.jpg', cropped)

        elif self.extraction_mode == Extraction.polygon:
            for i, (polygon, rect) in enumerate(zip(line_polygons, line_bounding_rects)):
                polygon_img = self.extract_polygon_image(img, polygon=polygon, rect=rect)
                cv2.imwrite(f'{self.out_line_img_dir}/{page_id}_{i}.jpg', polygon_img)

        else:
            raise ValueError("Unsupported extraction mode")
Martin's avatar
Martin committed

        for i, text in enumerate(line_transcriptions):
Martin's avatar
Martin committed
            write_file(f"{self.out_line_text_dir}/{page_id}_{i}.txt", text)
    @staticmethod
Martin's avatar
Martin committed
    def extract_polygon_image(img: 'np.ndarray', polygon: 'np.ndarray', rect: list) -> 'np.ndarray':
        pts = polygon.copy()
        [x, y, w, h] = rect
        cropped = img[y:y + h, x:x + w].copy()
        pts = pts - pts.min(axis=0)
        mask = np.zeros(cropped.shape[:2], np.uint8)
        cv2.drawContours(mask, [pts], -1, (255, 255, 255), -1, cv2.LINE_AA)
        dst = cv2.bitwise_and(cropped, cropped, mask=mask)
        bg = np.ones_like(cropped, np.uint8) * 255
        cv2.bitwise_not(bg, bg, mask=mask)
        dst2 = bg + dst
        return dst2

Martin's avatar
Martin committed
    def run_pages(self, page_ids: list):
        for page_id in page_ids:
            print("Page", page_id)
            self.extract_lines(page_id)

Martin's avatar
Martin committed
    def run_volumes(self, volume_ids: list):
        for volume_id in volume_ids:
            print("Vol", volume_id)
            page_ids = [page['id'] for page in api_client.paginate('ListElementChildren', id=volume_id)]
            self.run_pages(page_ids)


Martin's avatar
Martin committed
class Split(Enum):
    Train: int = 0
    Test: int = 1
    Validation: int = 2


class KaldiPartitionSplitter:

    def __init__(self, out_dir_base='/tmp/kaldi_data', split_train_ratio=0.8, split_test_ratio=0.1):
        self.out_dir_base = out_dir_base
        self.split_train_ratio = split_train_ratio
        self.split_test_ratio = split_test_ratio
Martin's avatar
Martin committed
        self.split_val_ratio = 1 - self.split_train_ratio - self.split_test_ratio
Martin's avatar
Martin committed

Martin's avatar
Martin committed
    def page_level_split(self, line_ids: list) -> dict:
Martin's avatar
Martin committed
        page_ids = list({'_'.join(line_id.split('_')[:-1]) for line_id in line_ids})
        random.shuffle(page_ids)
        page_count = len(page_ids)

        train_page_ids = page_ids[:round(page_count * self.split_train_ratio)]
        page_ids = page_ids[round(page_count * self.split_train_ratio):]

        test_page_ids = page_ids[:round(page_count * self.split_test_ratio)]
        page_ids = page_ids[round(page_count * self.split_test_ratio):]

        val_page_ids = page_ids

Martin's avatar
Martin committed
        page_dict = {page_id: Split.Train.value for page_id in train_page_ids}
        page_dict.update({page_id: Split.Test.value for page_id in test_page_ids})
        page_dict.update({page_id: Split.Validation.value for page_id in val_page_ids})
Martin's avatar
Martin committed
        return page_dict

    def create_partitions(self):
Martin's avatar
Martin committed
        print("Creating partitions")
Martin's avatar
Martin committed
        lines_path = Path(f'{self.out_dir_base}/Lines')
        line_ids = [str(file.relative_to(lines_path).with_suffix('')) for file in lines_path.glob('**/*.jpg')]

        page_dict = self.page_level_split(line_ids)
        datasets = [[] for _ in range(3)]
        for line_id in line_ids:
            page_id = '_'.join(line_id.split('_')[:-1])
            split_id = page_dict[page_id]
            datasets[split_id].append(line_id)

        partitions_dir = os.path.join(self.out_dir_base, 'Partitions')
        os.makedirs(partitions_dir, exist_ok=True)
        for i, dataset in enumerate(datasets):
Martin's avatar
Martin committed
            if not dataset:
                print(f"Partition {Split(i).name} is empty! Skipping..")
                continue
Martin's avatar
Martin committed
            file_name = f"{partitions_dir}/{Split(i).name}Lines.lst"
Martin's avatar
Martin committed
            write_file(file_name, '\n'.join(dataset) + '\n')


Martin's avatar
Martin committed
def create_parser():
    parser = argparse.ArgumentParser(
        description="Script to generate Kaldi training data from annotations from Arkindex",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
Martin's avatar
Martin committed
    parser.add_argument('-n', '--dataset_name', type=str, required=True,
Martin's avatar
Martin committed
                        help='Name of the dataset being created for kaldi '
                             '(useful for distinguishing different datasets when in Lines or Transcriptions directory)')
Martin's avatar
Martin committed
    parser.add_argument('-o', '--out_dir', type=str, required=True,
                        help='output directory')
    parser.add_argument('--train_ratio', type=float, default=0.8,
                        help='Ratio of pages to be used in train (between 0 and 1)')
    parser.add_argument('--test_ratio', type=float, default=0.1,
                        help='Ratio of pages to be used in train (between 0 and 1 - train_ratio)')
    parser.add_argument('-e', '--extraction_mode', type=lambda x: Extraction[x], default=Extraction.boundingRect,
                        help=f'Mode for extracting the line images: {[e.name for e in Extraction]}')
Martin's avatar
Martin committed

    group = parser.add_mutually_exclusive_group(required=False)
    group.add_argument('--grayscale', action='store_true',
                       help='Convert images to grayscale')
    group.add_argument('--color', action='store_false',
                       help='Use color images')
    parser.set_defaults(grayscale=True)

    parser.add_argument('--volumes', nargs='*',
                        help='List of volume ids to be used, separated by spaces')
    parser.add_argument('--pages', nargs='*',
                        help='List of page ids to be used, separated by spaces')

    return parser


def main():
    args = create_parser().parse_args()

    print("ARGS", args, '\n')

    kaldi_data_generator = KaldiDataGenerator(dataset_name=args.dataset_name,
                                              out_dir_base=args.out_dir,
                                              grayscale=args.grayscale,
                                              extraction=args.extraction_mode)
Martin's avatar
Martin committed

    kaldi_partitioner = KaldiPartitionSplitter(out_dir_base=args.out_dir,
                                               split_train_ratio=args.train_ratio,
                                               split_test_ratio=args.test_ratio)
    # extract all the lines and transcriptions
    if args.pages:
Martin's avatar
Martin committed
        kaldi_data_generator.run_pages(args.pages)
Martin's avatar
Martin committed
    if args.volumes:
        kaldi_data_generator.run_volumes(args.volumes)

    print()
    # create partitions from all the extracted data
    kaldi_partitioner.create_partitions()
Martin's avatar
Martin committed

Martin's avatar
Martin committed
    print("DONE")
Martin's avatar
Martin committed
if __name__ == '__main__':
    main()